1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
#include "Zoltan2_TaskMapping.hpp"
#include <Zoltan2_PartitioningProblem.hpp>
#include <Zoltan2_TestHelpers.hpp>
#include <string>
#include <Teuchos_RCP.hpp>
#include <Teuchos_Array.hpp>
#include <Teuchos_ParameterList.hpp>
#include "Teuchos_XMLParameterListHelpers.hpp"
#include "Tpetra_MultiVector.hpp"
#include <Tpetra_CrsGraph.hpp>
#include <Tpetra_Map.hpp>
#include <Zoltan2_XpetraCrsGraphAdapter.hpp>
#include <Zoltan2_XpetraMultiVectorAdapter.hpp>
typedef Tpetra::CrsGraph<zlno_t, zgno_t, znode_t> tcrsGraph_t;
typedef Tpetra::MultiVector<zscalar_t, zlno_t, zgno_t, znode_t> tMVector_t;
typedef Zoltan2::XpetraCrsGraphAdapter<tcrsGraph_t, tMVector_t> my_adapter_t;
int main(int narg, char *arg[]) {
Tpetra::ScopeGuard tscope(&narg, &arg);
Teuchos::RCP<const Teuchos::Comm<int> > tcomm = Tpetra::getDefaultComm();
typedef my_adapter_t::part_t part_t;
int nx = 2, ny = 2, nz = 2;
for (int i = 1 ; i < narg ; ++i) {
if (0 == strcasecmp( arg[i] , "NX")) {
nx = atoi( arg[++i] );
}
else if (0 == strcasecmp( arg[i] , "NY")) {
ny = atoi( arg[++i] );
}
else if (0 == strcasecmp( arg[i] , "NZ")) {
nz = atoi( arg[++i] );
}
else{
std::cerr << "Unrecognized command line argument #"
<< i << ": " << arg[i] << std::endl ;
return 1;
}
}
try{
int rank = tcomm->getRank();
part_t numProcs = tcomm->getSize();
int coordDim = 3;
zgno_t numGlobalTasks = nx*ny*nz;
zgno_t myTasks = numGlobalTasks / numProcs;
zgno_t taskLeftOver = numGlobalTasks % numProcs;
if (rank < taskLeftOver ) ++myTasks;
zgno_t myTaskBegin = (numGlobalTasks / numProcs) * rank;
myTaskBegin += (taskLeftOver < rank ? taskLeftOver : rank);
zgno_t myTaskEnd = myTaskBegin + myTasks;
zscalar_t **partCenters = NULL;
partCenters = new zscalar_t * [coordDim];
for(int i = 0; i < coordDim; ++i) {
partCenters[i] = new zscalar_t[myTasks];
}
zgno_t *task_gnos = new zgno_t [myTasks];
zlno_t *task_communication_xadj_ = new zlno_t [myTasks + 1];
zgno_t *task_communication_adj_ = new zgno_t [myTasks * 6];
zlno_t prevNCount = 0;
task_communication_xadj_[0] = 0;
for (zlno_t i = myTaskBegin; i < myTaskEnd; ++i) {
task_gnos[i - myTaskBegin] = i;
zlno_t x = i % nx;
zlno_t y = (i / (nx)) % ny;
zlno_t z = (i / (nx)) / ny;
partCenters[0][i - myTaskBegin] = x;
partCenters[1][i - myTaskBegin] = y;
partCenters[2][i - myTaskBegin] = z;
if (x > 0) {
task_communication_adj_[prevNCount++] = i - 1;
}
if (x < nx - 1) {
task_communication_adj_[prevNCount++] = i + 1;
}
if (y > 0) {
task_communication_adj_[prevNCount++] = i - nx;
}
if (y < ny - 1) {
task_communication_adj_[prevNCount++] = i + nx;
}
if (z > 0) {
task_communication_adj_[prevNCount++] = i - nx * ny;
}
if (z < nz - 1) {
task_communication_adj_[prevNCount++] = i + nx * ny;
}
task_communication_xadj_[i + 1 - myTaskBegin] = prevNCount;
}
using namespace Teuchos;
RCP<my_adapter_t> ia;
typedef Tpetra::Map<>::node_type mytest_znode_t;
typedef Tpetra::Map<zlno_t, zgno_t, mytest_znode_t> map_t;
RCP<const map_t> map =
rcp(new map_t (numGlobalTasks, myTasks, 0, tcomm));
Teuchos::Array<size_t> adjPerTask(myTasks);
for (zlno_t lclRow = 0; lclRow < myTasks; lclRow++)
adjPerTask[lclRow] = task_communication_xadj_[lclRow+1]
- task_communication_xadj_[lclRow];
RCP<tcrsGraph_t> TpetraCrsGraph(new tcrsGraph_t (map, adjPerTask()));
for (zlno_t lclRow = 0; lclRow < myTasks; ++lclRow) {
const zgno_t gblRow = map->getGlobalElement (lclRow);
zgno_t begin = task_communication_xadj_[lclRow];
zgno_t end = task_communication_xadj_[lclRow + 1];
const ArrayView< const zgno_t > indices(task_communication_adj_ + begin,
end - begin);
TpetraCrsGraph->insertGlobalIndices(gblRow, indices);
}
TpetraCrsGraph->fillComplete ();
RCP<const tcrsGraph_t> const_data =
rcp_const_cast<const tcrsGraph_t>(TpetraCrsGraph);
ia = RCP<my_adapter_t> (new my_adapter_t(const_data));
const int coord_dim = 3;
Teuchos::Array<Teuchos::ArrayView<const zscalar_t> > coordView(coord_dim);
if(myTasks > 0) {
Teuchos::ArrayView<const zscalar_t> a(partCenters[0], myTasks);
coordView[0] = a;
Teuchos::ArrayView<const zscalar_t> b(partCenters[1], myTasks);
coordView[1] = b;
Teuchos::ArrayView<const zscalar_t> c(partCenters[2], myTasks);
coordView[2] = c;
}
else {
Teuchos::ArrayView<const zscalar_t> a;
coordView[0] = a;
coordView[1] = a;
coordView[2] = a;
}
RCP<tMVector_t> coords(new tMVector_t(map, coordView.view(0, coord_dim),
coord_dim));//= set multivector;
RCP<const tMVector_t> const_coords =
rcp_const_cast<const tMVector_t>(coords);
RCP <Zoltan2::XpetraMultiVectorAdapter<tMVector_t> > adapter(
new Zoltan2::XpetraMultiVectorAdapter<tMVector_t>(const_coords));
ia->setCoordinateInput(adapter.getRawPtr());
// return ia;
// Create input adapter
// RCP<my_adapter_t> ia = create_problem(tcomm, nx, ny, nz);
// Create partitioning problem
// xpetra_graph problem type
typedef Zoltan2::PartitioningProblem<my_adapter_t> xcrsGraph_problem_t;
typedef Zoltan2::EvaluatePartition<my_adapter_t> quality_t;
ParameterList zoltan2_parameters;
zoltan2_parameters.set("compute_metrics", true); // bool parameter
zoltan2_parameters.set("imbalance_tolerance", 1.0);
zoltan2_parameters.set("num_global_parts", tcomm->getSize());
zoltan2_parameters.set("algorithm", "multijagged");
zoltan2_parameters.set("mj_keep_part_boxes", false); // bool parameter
zoltan2_parameters.set("mj_recursion_depth", 3);
RCP<xcrsGraph_problem_t> partition_problem;
partition_problem =
RCP<xcrsGraph_problem_t> (new xcrsGraph_problem_t(
ia.getRawPtr(),&zoltan2_parameters,tcomm));
// Solve the partitioning problem.
partition_problem->solve();
tcomm->barrier();
RCP<const Zoltan2::Environment> env = partition_problem->getEnvironment();
RCP<quality_t>metricObject =
rcp(new quality_t(ia.getRawPtr(), &zoltan2_parameters, tcomm,
&partition_problem->getSolution()));
if (tcomm->getRank() == 0) {
metricObject->printMetrics(std::cout);
}
partition_problem->printTimers();
part_t *proc_to_task_xadj_ = NULL;
part_t *proc_to_task_adj_ = NULL;
// Create the zoltan2 machine representation object
Zoltan2::MachineRepresentation<zscalar_t, part_t> mach(*tcomm);
// Create the mapper and map the partitioning solution.
Zoltan2::CoordinateTaskMapper<my_adapter_t, part_t> ctm(
tcomm,
Teuchos::rcpFromRef(mach),
ia,
rcpFromRef(partition_problem->getSolution()),
env);
// Get the results and print
ctm.getProcTask(proc_to_task_xadj_, proc_to_task_adj_);
// part_t numProcs = tcomm->getSize();
if (tcomm->getRank() == 0) {
for (part_t i = 0; i < numProcs; ++i) {
std::cout << "\nProc i:" << i << " ";
for (part_t j = proc_to_task_xadj_[i];
j < proc_to_task_xadj_[i + 1]; ++j) {
std::cout << " " << proc_to_task_adj_[j];
}
}
std::cout << std::endl;
}
// Below is to calculate the result hops. this uses the global graph
// also this is used for debug, as the hops are also calculated in mapper.
{
zlno_t prevNCount_tmp = 0;
zgno_t *task_communication_adj_tmp = new zgno_t [numGlobalTasks * 6];
zlno_t *task_communication_xadj_tmp = new zlno_t [numGlobalTasks + 1];
task_communication_xadj_tmp[0] = 0;
for (zlno_t i = 0; i < numGlobalTasks; ++i) {
zlno_t x = i % nx;
zlno_t y = (i / (nx)) % ny;
zlno_t z = (i / (nx)) / ny;
if (x > 0) {
task_communication_adj_tmp[prevNCount_tmp++] = i - 1;
}
if (x < nx - 1) {
task_communication_adj_tmp[prevNCount_tmp++] = i + 1;
}
if (y > 0) {
task_communication_adj_tmp[prevNCount_tmp++] = i - nx;
}
if (y < ny - 1) {
task_communication_adj_tmp[prevNCount_tmp++] = i + nx;
}
if (z > 0) {
task_communication_adj_tmp[prevNCount_tmp++] = i - nx * ny;
}
if (z < nz - 1) {
task_communication_adj_tmp[prevNCount_tmp++] = i + nx * ny;
}
task_communication_xadj_tmp[i + 1] = prevNCount_tmp;
}
int mach_coord_dim = mach.getMachineDim();
std::vector <int> mach_extent(mach_coord_dim);
mach.getMachineExtent(&(mach_extent[0]));
std::vector <part_t> all_parts(numGlobalTasks), copy(numGlobalTasks, 0);
const part_t *parts =
partition_problem->getSolution().getPartListView();
// typedef Tpetra::Map<>::node_type mytest_znode_t;
// typedef Tpetra::Map<zlno_t, zgno_t, mytest_znode_t> map_t;
// RCP<const map_t> map =
// rcp(new map_t (numGlobalTasks, myTasks, 0, tcomm));
for (part_t i = 0; i < myTasks; ++i) {
zgno_t g = map->getGlobalElement(i);
copy[g] = parts[i];
}
reduceAll<int, part_t>(
*tcomm,
Teuchos::REDUCE_SUM,
numGlobalTasks,
&(copy[0]),
&(all_parts[0])
);
zscalar_t **proc_coords;
mach.getAllMachineCoordinatesView(proc_coords);
part_t hops=0;
part_t hops2 = 0;
int *machine_extent = new int [mach_coord_dim];
bool *machine_extent_wrap_around = new bool[mach_coord_dim];
mach.getMachineExtent(machine_extent);
mach.getMachineExtentWrapArounds(machine_extent_wrap_around);
for (zlno_t i = 0; i < numGlobalTasks; ++i) {
zlno_t b = task_communication_xadj_tmp[i];
zlno_t e = task_communication_xadj_tmp[i + 1];
part_t procId1 = ctm.getAssignedProcForTask(all_parts[i]);
for (zlno_t j = b; j < e; ++j) {
zgno_t n = task_communication_adj_tmp[j];
part_t procId2 = ctm.getAssignedProcForTask(all_parts[n]);
zscalar_t distance2 = 0;
mach.getHopCount(procId1, procId2, distance2);
hops2 += distance2;
for (int k = 0 ; k < mach_coord_dim ; ++k) {
part_t distance =
ZOLTAN2_ABS(proc_coords[k][procId1] - proc_coords[k][procId2]);
if (machine_extent_wrap_around[k]) {
if (machine_extent[k] - distance < distance) {
distance = machine_extent[k] - distance;
}
}
hops += distance;
}
}
}
delete [] machine_extent_wrap_around;
delete [] machine_extent;
if (tcomm->getRank() == 0)
std::cout << "HOPS:" << hops << " HOPS2:" << hops2 << std::endl;
delete [] task_communication_xadj_tmp;
delete [] task_communication_adj_tmp;
}
/*
part_t *machineDimensions = NULL;
//machineDimensions = hopper;
Zoltan2::coordinateTaskMapperInterface<part_t, zscalar_t, zscalar_t>(
tcomm,
procDim,
numProcs,
procCoordinates,
coordDim,
numGlobalTasks,
partCenters,
task_communication_xadj_,
task_communication_adj_,
NULL,
proc_to_task_xadj_,
proc_to_task_adj_,
partArraysize,
partArray,
machineDimensions
);
*/
if (tcomm->getRank() == 0) {
std::cout << "PASS" << std::endl;
}
for (int i = 0; i < coordDim; i++) delete [] partCenters[i];
delete [] partCenters;
}
catch(std::string &s) {
std::cerr << s << std::endl;
}
catch(char * s) {
std::cerr << s << std::endl;
}
}
|