File: AnalyticPolynomialsMatchTests.cpp

package info (click to toggle)
trilinos 13.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 837,948 kB
  • sloc: cpp: 3,466,824; ansic: 433,701; fortran: 168,838; python: 102,712; xml: 66,353; sh: 38,380; makefile: 25,246; perl: 7,516; f90: 6,358; csh: 4,161; objc: 2,620; lex: 1,484; lisp: 810; javascript: 552; yacc: 515; awk: 364; ml: 281; php: 145
file content (1037 lines) | stat: -rw-r--r-- 45,334 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
// @HEADER
// ************************************************************************
//
//                           Intrepid2 Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim  (kyukim@sandia.gov),
//                    Mauro Perego  (mperego@sandia.gov), or
//                    Nate Roberts  (nvrober@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file   AnalyticPolynomialsMatchTests.cpp
    \brief  Tests to verify that basis implementations match the analytic polynomials on which they are based.
    \author Created by N.V. Roberts.
 */
 
#include "Teuchos_UnitTestHarness.hpp"

#include "Intrepid2_Sacado.hpp" // important to include this prior to other Intrepid2 headers.

#include "Intrepid2_HierarchicalBasisFamily.hpp"
#include "Intrepid2_NodalBasisFamily.hpp"
#include "Intrepid2_Polynomials.hpp"
#include "Intrepid2_Types.hpp"

#include "Intrepid2_TestUtils.hpp"

#include "Kokkos_Core.hpp"

namespace
{
  using namespace Intrepid2;
  
  template<typename Scalar>
  Scalar integratedJacobi(Scalar x, Scalar t, double alpha, const int n, const int derivativeOrder = 0)
  {
    // ideally, we would have closed-form expressions somewhere in here, as we do for integrated Legendre below
    // for now, though, this is just a thin wrapper around the call to Intrepid2::Polynomials::integratedJacobiValues()
    auto values = getView<Scalar,Kokkos::HostSpace>("integrated Jacobi values", n+1);
    Polynomials::integratedJacobiValues(values, alpha, n, x, t);
    return values(n);
  }
  
  template<typename Scalar>
  Scalar integratedLegendreAnalytic(Scalar x, const int n, bool useMinusOneToOne, const int derivativeOrder = 0)
  {
    // formulas below are for x in [-1,1]; if we are using [0,1], need to remap appropriately:
    const double derivativeScaling = useMinusOneToOne ? 1.0 : pow(2.0, derivativeOrder);
    if (!useMinusOneToOne)
    {
      x = 2.0 * x - 1.0;
    }
    Scalar value;
    switch (derivativeOrder)
    {
      case 0:
        switch (n)
      {
        case 0:
          value = (1.0-x)/2.0;                   // left vertex function (node at -1)
          break;
        case 1:
          value = (1.0+x)/2.0;                   // right vertex function (node at 1)
          break;
        case 2:
          value = (x*x-1.0)/4.0;                 // L_2 : (x^2 - 1) / 4
          break;
        case 3:
          value = (x*x*x-x)/4.0;                 // L_3 : (x^3 - x) / 4
          break;
        case 4:
          value = (5.*x*x*x*x - 6.*x*x+1.)/16.0; // L_4 : (5x^4-6x^2+1) / 16
          break;
        default:
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "unsupported n");
      }
        break;
      case 1:
        switch (n)
      {
        case 0:
          value = -1.0/2.0;              // left vertex function (node at -1)
          break;
        case 1:
          value = 1.0/2.0;               // right vertex function (node at 1)
          break;
        case 2:
          value = x/2.0;                 // L_2 : (x^2 - 1) / 4
          break;
        case 3:
          value = (3.0*x*x-1.0)/4.0;     // L_3 : (x^3 - x) / 4
          break;
        case 4:
          value = (5.*x*x*x - 3.*x)/4.0; // L_4 : (5x^4-6x^2+1) / 16
          break;
        default:
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "unsupported n");
      }
        break;
      case 2:
        switch (n)
      {
        case 0:
          value = 0.0;               // left vertex function (node at -1)
          break;
        case 1:
          value = 0.0;               // right vertex function (node at 1)
          break;
        case 2:
          value = 1.0/2.0;           // L_2 : (x^2 - 1) / 4
          break;
        case 3:
          value = 3.0*x/2.0;         // L_3 : (x^3 - x) / 4
          break;
        case 4:
          value = (15.*x*x - 3.)/4.; // L_4 : (5x^4-6x^2+1) / 16
          break;
        default:
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "unsupported n");
      }
        break;
      case 3:
        switch (n)
      {
        case 0:
          value = 0.0;               // left vertex function (node at -1)
          break;
        case 1:
          value = 0.0;               // right vertex function (node at 1)
          break;
        case 2:
          value = 0.0;               // L_2 : (x^2 - 1) / 4
          break;
        case 3:
          value = 3.0/2.0;           // L_3 : (x^3 - x) / 4
          break;
        case 4:
          value = (15.*x)/2.;        // L_4 : (5x^4-6x^2+1) / 16
          break;
        default:
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "unsupported n");
      }
        break;
      case 4:
        switch (n)
      {
        case 0:
          value = 0.0;           // left vertex function (node at -1)
          break;
        case 1:
          value = 0.0;           // right vertex function (node at 1)
          break;
        case 2:
          value = 0.0;           // L_2 : (x^2 - 1) / 4
          break;
        case 3:
          value = 0.0;           // L_3 : (x^3 - x) / 4
          break;
        case 4:
          value = 15./2.;        // L_4 : (5x^4-6x^2+1) / 16
          break;
        default:
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "unsupported n");
      }
        break;
      default:
        value = 0.0;
    }
    return value * derivativeScaling;
  }
  
  template<typename Scalar>
  Scalar shiftedScaledIntegratedLegendreAnalytic(Scalar x, Scalar t, const int n)
  {
    bool useMinusOneToOne = false; // our domain is [0,1]
    const int derivativeOrder = 0;
    double tol = 1e-15;
    using std::abs;
    if ((n == 0) || (n == 1))
    {
      // linear in x: scaling by t cancels
      return integratedLegendreAnalytic(x, n, useMinusOneToOne, derivativeOrder);
    }
    else if (abs(t) < tol)
    {
      // define a scaling by 0 to be 0 (does this match what Fuentes et al do??)
      // even if this isn't perfectly general, it works for our tests (at least for OPERATOR_VALUE):
      // we only ever will end up with t=0 for edge functions on the triangle, evaluated at a vertex.  These vanish.
      return 0.0;
    }
    else
    {
      Scalar tPower = 1.0;
      for (int i=0; i<n; i++)
      {
        tPower *= t;
      }
      return tPower * integratedLegendreAnalytic(Scalar(x/t), n, useMinusOneToOne);
    }
  }
  
  template<typename DeviceType,
           typename OutputScalar = double,
           typename PointScalar  = double>
  void testHierarchicalHGRAD_LINE_MatchesAnalyticValues(Intrepid2::EOperator op, const double tol, Teuchos::FancyOStream &out, bool &success)
  {
    using namespace Intrepid2;
    using BasisFamily = HierarchicalBasisFamily<DeviceType,OutputScalar,PointScalar>;
    
    const int polyOrder = 4;
    auto hgradBasis = getLineBasis<BasisFamily>(FUNCTION_SPACE_HGRAD, polyOrder);
    
    int numPoints_1D = 5;
    shards::CellTopology lineTopo = shards::CellTopology(shards::getCellTopologyData<shards::Line<> >() );
    auto inputPointsView = getInputPointsView<PointScalar,DeviceType>(lineTopo, numPoints_1D);
    
    auto hgradOutputView = getOutputView<OutputScalar,DeviceType>(FUNCTION_SPACE_HGRAD, op, hgradBasis->getCardinality(), numPoints_1D, 1);
    
    hgradBasis->getValues(hgradOutputView, inputPointsView, op);
    
    auto hgradOutputViewHost = getHostCopy(hgradOutputView);
    auto inputPointsViewHost = getHostCopy(inputPointsView);
    
    auto expectedValuesView     = getView<OutputScalar,DeviceType>("expected values", hgradBasis->getCardinality());
    auto expectedValuesViewHost = getHostCopy(expectedValuesView);
    
    for (int pointOrdinal=0; pointOrdinal<numPoints_1D; pointOrdinal++)
    {
      int pointPassed = true;
      PointScalar x = inputPointsViewHost(pointOrdinal,0);
      
      const bool useMinusOneToOne = true; // Intrepid2's reference element
      int derivativeOrder;
      
      switch (op)
      {
        case Intrepid2::OPERATOR_VALUE:
          derivativeOrder = 0;
          break;
        case Intrepid2::OPERATOR_GRAD:
          derivativeOrder = 1;
          break;
        case Intrepid2::OPERATOR_D1:
        case Intrepid2::OPERATOR_D2:
        case Intrepid2::OPERATOR_D3:
        case Intrepid2::OPERATOR_D4:
        case Intrepid2::OPERATOR_D5:
        case Intrepid2::OPERATOR_D6:
        case Intrepid2::OPERATOR_D7:
        case Intrepid2::OPERATOR_D8:
        case Intrepid2::OPERATOR_D9:
        case Intrepid2::OPERATOR_D10:
          derivativeOrder = op - OPERATOR_D1 + 1;
          break;
        default:
          INTREPID2_TEST_FOR_EXCEPTION(true, std::invalid_argument, "Unsupported operator");
      }
      for (int n=0; n<polyOrder+1; n++)
      {
        expectedValuesViewHost(n) = integratedLegendreAnalytic(x, n, useMinusOneToOne, derivativeOrder);
      }
      
      for (int fieldOrdinal=0; fieldOrdinal<hgradBasis->getCardinality(); fieldOrdinal++)
      {
        OutputScalar actual    = hgradOutputViewHost.access(fieldOrdinal,pointOrdinal,0);
        OutputScalar expected  = expectedValuesViewHost(fieldOrdinal);
        
        bool valuesMatch = true;
        bool valuesAreBothSmall = valuesAreSmall(actual, expected, tol);
        if (!valuesAreBothSmall)
        {
          TEUCHOS_TEST_FLOATING_EQUALITY(actual, expected, tol, out, valuesMatch);
        }
        
        if (!valuesMatch)
        {
          pointPassed = false;
          PointScalar x = inputPointsViewHost(pointOrdinal,0);
          if (op == OPERATOR_VALUE) out << "values";
          else
          {
            int derivativeOrder = getOperatorOrder(op);
            if (derivativeOrder == 1)
            {
              out << "first ";
            }
            else if (derivativeOrder == 2)
            {
              out << "second ";
            }
            else if (derivativeOrder == 3)
            {
              out << "third ";
            }
            else
            {
              out << derivativeOrder << "th ";
            }
            out << "derivatives";
          }
          out << " for "  << x  << " differ for field ordinal " << fieldOrdinal;
          out << ": expected " << expected << "; actual " << actual;
          out << " (diff: " << expected-actual << ")" << std::endl;
          success = false;
        }
      }
      if (!pointPassed)
      {
        out << "point " << pointOrdinal << " failed.\n";
      }
    }
  }
  
  void testHierarchicalHVOL_LINE_MatchesAnalyticValues(Intrepid2::EOperator op, const double tol, Teuchos::FancyOStream &out, bool &success)
  {
    using namespace Intrepid2;
    using DeviceType   = DefaultTestDeviceType;
    using BasisFamily  = HierarchicalBasisFamily<DeviceType>;
    using PointScalar  = BasisFamily::PointValueType;
    using OutputScalar = BasisFamily::OutputValueType;
    
    const int polyOrder = 4;
    auto hvolBasis = getLineBasis<BasisFamily>(FUNCTION_SPACE_HVOL, polyOrder);
    
    int numPoints_1D = 5;
    shards::CellTopology lineTopo = shards::CellTopology(shards::getCellTopologyData<shards::Line<> >() );
    auto inputPointsView = getInputPointsView<PointScalar,DeviceType>(lineTopo, numPoints_1D);
    
    auto hvolOutputView = getOutputView<OutputScalar,DeviceType>(FUNCTION_SPACE_HVOL, op, hvolBasis->getCardinality(), numPoints_1D, 1);
    
    hvolBasis->getValues(hvolOutputView, inputPointsView, op);
    
    auto hvolOutputViewHost  = getHostCopy(hvolOutputView);
    auto inputPointsViewHost = getHostCopy(inputPointsView);
    
    for (int pointOrdinal=0; pointOrdinal<numPoints_1D; pointOrdinal++)
    {
      int pointPassed = true;
      double x = inputPointsViewHost(pointOrdinal,0);
      
      std::vector<double> expectedValues(hvolBasis->getCardinality());
      switch (op)
      {
        case Intrepid2::OPERATOR_VALUE:
          expectedValues[0] = 1;                              // P_0 : 1
          expectedValues[1] = x;                              // P_1 : x
          expectedValues[2] = (3.*x*x-1.0)/2.0;               // P_2 : (3x^2 - 1) / 2
          expectedValues[3] = (5.*x*x*x-3.*x)/2.0;            // P_3 : (5x^3 - 3x) / 2
          expectedValues[4] = (35.*x*x*x*x - 30.*x*x+3.)/8.0; // P_4 : (35x^4-30x^2+3) / 8
          break;
        case Intrepid2::OPERATOR_GRAD:
        case Intrepid2::OPERATOR_D1:
          // first derivatives of the above:
          expectedValues[0] = 0.0;                      // P_0 : 1
          expectedValues[1] = 1.0;                      // P_1 : x
          expectedValues[2] = 3.*x;                     // P_2 : (3x^2 - 1) / 2
          expectedValues[3] = (15.0*x*x-3.0)/2.0;       // P_3 : (5x^3 - 3x) / 2
          expectedValues[4] = (35.*x*x*x - 15.*x)/2.0;  // P_4 : (35x^4-30x^2+3) / 8
          break;
        case Intrepid2::OPERATOR_D2:
          // second derivatives:
          expectedValues[0] = 0.0;                 // P_0 : 1
          expectedValues[1] = 0.0;                 // P_1 : x
          expectedValues[2] = 3.0;                 // P_2 : (3x^2 - 1) / 2
          expectedValues[3] = 15.0*x;              // P_3 : (5x^3 - 3x) / 2
          expectedValues[4] = (105.*x*x - 15.)/2.; // P_4 : (35x^4-30x^2+3) / 8
          break;
        case Intrepid2::OPERATOR_D3:
          // third derivatives:
          expectedValues[0] = 0.0;           // P_0 : 1
          expectedValues[1] = 0.0;           // P_1 : x
          expectedValues[2] = 0.0;           // P_2 : (3x^2 - 1) / 2
          expectedValues[3] = 15.0;          // P_3 : (5x^3 - 3x) / 2
          expectedValues[4] = 105.*x;        // P_4 : (35x^4-30x^2+3) / 8
          break;
        case Intrepid2::OPERATOR_D4:
          // fourth derivatives:
          expectedValues[0] = 0.0;           // P_0 : 1
          expectedValues[1] = 0.0;           // P_1 : x
          expectedValues[2] = 0.0;           // P_2 : (3x^2 - 1) / 2
          expectedValues[3] = 0.0;           // P_3 : (5x^3 - 3x) / 2
          expectedValues[4] = 105.;          // P_4 : (35x^4-30x^2+3) / 8
          break;
        case Intrepid2::OPERATOR_D5:
        case Intrepid2::OPERATOR_D6:
        case Intrepid2::OPERATOR_D7:
        case Intrepid2::OPERATOR_D8:
        case Intrepid2::OPERATOR_D9:
        case Intrepid2::OPERATOR_D10:
          // nth (n≥5) derivatives are all 0:
          expectedValues[0] = 0.0;           // P_0 : 1
          expectedValues[1] = 0.0;           // P_1 : x
          expectedValues[2] = 0.0;           // P_2 : (3x^2 - 1) / 2
          expectedValues[3] = 0.0;           // P_3 : (5x^3 - 3x) / 2
          expectedValues[4] = 0.0;           // P_4 : (35x^4-30x^2+3) / 8
          break;
        default:
          INTREPID2_TEST_FOR_EXCEPTION(true, std::invalid_argument, "Unsupported operator");
      }
      
      for (int fieldOrdinal=0; fieldOrdinal<hvolBasis->getCardinality(); fieldOrdinal++)
      {
        double actual    = hvolOutputViewHost.access(fieldOrdinal,pointOrdinal,0);
        double expected  = expectedValues[fieldOrdinal];
        
        bool valuesMatch = true;
        bool valuesAreBothSmall = valuesAreSmall(actual, expected, tol);
        if (!valuesAreBothSmall)
        {
          TEUCHOS_TEST_FLOATING_EQUALITY(actual, expected, tol, out, valuesMatch);
        }
        
        if (!valuesMatch)
        {
          pointPassed = false;
          double x = inputPointsViewHost(pointOrdinal,0);
          if (op == OPERATOR_VALUE) out << "values";
          else
          {
            int derivativeOrder = getOperatorOrder(op);
            if (derivativeOrder == 1)
            {
              out << "first ";
            }
            else if (derivativeOrder == 2)
            {
              out << "second ";
            }
            else if (derivativeOrder == 3)
            {
              out << "third ";
            }
            else
            {
              out << derivativeOrder << "th ";
            }
            out << "derivatives";
          }
          out << " for "  << x  << " differ for field ordinal " << fieldOrdinal;
          out << ": expected " << expected << "; actual " << actual;
          out << " (diff: " << expected-actual << ")" << std::endl;
          success = false;
        }
      }
      if (!pointPassed)
      {
        out << "point " << pointOrdinal << " failed.\n";
      }
    }
  }
  
  template<typename DeviceType,
           typename OutputScalar = double,
           typename PointScalar  = double>
  void testHierarchicalHGRAD_TRIANGLE_MatchesAnalyticValues(Intrepid2::EOperator op, const double tol, Teuchos::FancyOStream &out, bool &success)
  {
    using namespace Intrepid2;
    using BasisFamily = HierarchicalBasisFamily<DeviceType,OutputScalar,PointScalar>;
    
    const int spaceDim  = 2;
    const int polyOrder = 4;
    auto hgradBasis = getTriangleBasis<BasisFamily>(FUNCTION_SPACE_HGRAD, polyOrder);
    
    const int numVertices                  = 3;
    const int numFunctionsPerVertex        = 1;
    const int numVertexFunctionsExpected   = numVertices * numFunctionsPerVertex;
    const int numEdges                     = 3;
    const int num1DEdgeFunctions           = (polyOrder + 1) - 2; // line basis cardinality, minus two vertex functions
    const int numEdgeFunctionsExpected     = num1DEdgeFunctions * numEdges;
    const int numInteriorFunctionsExpected = (num1DEdgeFunctions-1)*num1DEdgeFunctions/2; // triangular sum
    const int expectedCardinality = numVertexFunctionsExpected + numEdgeFunctionsExpected + numInteriorFunctionsExpected;
    
    TEST_EQUALITY(expectedCardinality, hgradBasis->getCardinality());
    // could also test vertex/edge/face function count individually (worth doing, I think)
    
    int numPoints_1D = 5;
    shards::CellTopology triangleTopo = shards::CellTopology(shards::getCellTopologyData<shards::Triangle<> >() );
    auto inputPointsView = getInputPointsView<PointScalar,DeviceType>(triangleTopo, numPoints_1D);
    
    const int numPoints = inputPointsView.extent_int(0);
        
    auto hgradOutputView = getOutputView<OutputScalar,DeviceType>(FUNCTION_SPACE_HGRAD, op, hgradBasis->getCardinality(), numPoints, spaceDim);
    hgradBasis->getValues(hgradOutputView, inputPointsView, op);
    
    auto hgradOutputViewHost  = getHostCopy(hgradOutputView);
    auto inputPointsViewHost = getHostCopy(inputPointsView);
    
    auto expectedValuesView = getOutputView<OutputScalar,DeviceType>(FUNCTION_SPACE_HGRAD, op, hgradBasis->getCardinality(), numPoints, spaceDim);
    auto expectedValuesViewHost = getHostCopy(expectedValuesView);
    
    auto legendreValuesAtPoint = getView<OutputScalar,DeviceType>("Legendre values temporary storage", polyOrder+1);
    auto legendreValuesAtPointHost = getHostCopy(legendreValuesAtPoint);
    
    for (int pointOrdinal=0; pointOrdinal<numPoints; pointOrdinal++)
    {
      int pointPassed = true;
      PointScalar x = inputPointsViewHost(pointOrdinal,0);
      PointScalar y = inputPointsViewHost(pointOrdinal,1);
      
      out << "Checking point (" << x << "," << y << ")\n";
      
      // write as barycentric coordinates:
      const PointScalar lambda[3] = {1. - x - y, x, y};
      const int edge_start[3] = {0,1,0};
      const int edge_end[3]   = {1,2,2};
      
      switch (op)
      {
        case Intrepid2::OPERATOR_VALUE:
        {
          // vertex polynomials come first, according to vertex ordering: (0,0), (1,0), (0,1)
          for (int vertexOrdinal=0; vertexOrdinal<numVertexFunctionsExpected; vertexOrdinal++)
          {
            expectedValuesViewHost(vertexOrdinal,pointOrdinal) = lambda[vertexOrdinal];
          }
          
          int fieldOrdinalOffset = 3;
          for (int edgeOrdinal=0; edgeOrdinal<numEdges; edgeOrdinal++)
          {
            const auto & s0 = lambda[edge_start[edgeOrdinal]];
            const auto & s1 = lambda[edge_end[edgeOrdinal]];
            const PointScalar t = s0 + s1;
            
            for (int edgeFunctionOrdinal=0; edgeFunctionOrdinal<num1DEdgeFunctions; edgeFunctionOrdinal++)
            {
              expectedValuesViewHost(edgeFunctionOrdinal+fieldOrdinalOffset,pointOrdinal) = shiftedScaledIntegratedLegendreAnalytic(s1, t, edgeFunctionOrdinal+2);
            }
            fieldOrdinalOffset += num1DEdgeFunctions;
          }
          // face functions
          for (int i=2; i<polyOrder; i++)
          {
            // we use edge function values from the 01 edge and blend with integrated Jacobi
            // the 01 edge function values start just after the vertex functions; since i starts at 2, our offset is therefore 1:
            const int offset = numVertexFunctionsExpected - 2;
            const OutputScalar & edgeFunctionValue = expectedValuesViewHost(i+offset,pointOrdinal);
            double alpha = i * 2.0;
            for (int j=1; i+j<=polyOrder; j++)
            {
              const PointScalar  &x = lambda[2];
              const PointScalar   t = 1.0;
              const OutputScalar jacobiValue = integratedJacobi(x, t, alpha, j);
              expectedValuesViewHost(fieldOrdinalOffset,pointOrdinal) = edgeFunctionValue * jacobiValue;
              fieldOrdinalOffset++;
            }
          }
        }
          break;
//        case Intrepid2::OPERATOR_GRAD:
//        case Intrepid2::OPERATOR_D1:
//          // first derivatives of the above:
//          expectedValues[0] = 0.0;                      // P_0 : 1
//          expectedValues[1] = 1.0;                      // P_1 : x
//          expectedValues[2] = 3.*x;                     // P_2 : (3x^2 - 1) / 2
//          expectedValues[3] = (15.0*x*x-3.0)/2.0;       // P_3 : (5x^3 - 3x) / 2
//          expectedValues[4] = (35.*x*x*x - 15.*x)/2.0;  // P_4 : (35x^4-30x^2+3) / 8
//          break;
//        case Intrepid2::OPERATOR_D2:
//          // second derivatives:
//          expectedValues[0] = 0.0;                 // P_0 : 1
//          expectedValues[1] = 0.0;                 // P_1 : x
//          expectedValues[2] = 3.0;                 // P_2 : (3x^2 - 1) / 2
//          expectedValues[3] = 15.0*x;              // P_3 : (5x^3 - 3x) / 2
//          expectedValues[4] = (105.*x*x - 15.)/2.; // P_4 : (35x^4-30x^2+3) / 8
//          break;
//        case Intrepid2::OPERATOR_D3:
//          // third derivatives:
//          expectedValues[0] = 0.0;           // P_0 : 1
//          expectedValues[1] = 0.0;           // P_1 : x
//          expectedValues[2] = 0.0;           // P_2 : (3x^2 - 1) / 2
//          expectedValues[3] = 15.0;          // P_3 : (5x^3 - 3x) / 2
//          expectedValues[4] = 105.*x;        // P_4 : (35x^4-30x^2+3) / 8
//          break;
//        case Intrepid2::OPERATOR_D4:
//          // fourth derivatives:
//          expectedValues[0] = 0.0;           // P_0 : 1
//          expectedValues[1] = 0.0;           // P_1 : x
//          expectedValues[2] = 0.0;           // P_2 : (3x^2 - 1) / 2
//          expectedValues[3] = 0.0;           // P_3 : (5x^3 - 3x) / 2
//          expectedValues[4] = 105.;          // P_4 : (35x^4-30x^2+3) / 8
//          break;
//        case Intrepid2::OPERATOR_D5:
//        case Intrepid2::OPERATOR_D6:
//        case Intrepid2::OPERATOR_D7:
//        case Intrepid2::OPERATOR_D8:
//        case Intrepid2::OPERATOR_D9:
//        case Intrepid2::OPERATOR_D10:
//          // nth (n≥5) derivatives are all 0:
//          expectedValues[0] = 0.0;           // P_0 : 1
//          expectedValues[1] = 0.0;           // P_1 : x
//          expectedValues[2] = 0.0;           // P_2 : (3x^2 - 1) / 2
//          expectedValues[3] = 0.0;           // P_3 : (5x^3 - 3x) / 2
//          expectedValues[4] = 0.0;           // P_4 : (35x^4-30x^2+3) / 8
//          break;
        default:
          INTREPID2_TEST_FOR_EXCEPTION(true, std::invalid_argument, "Unsupported operator");
      }
      
      for (int fieldOrdinal=0; fieldOrdinal<hgradBasis->getCardinality(); fieldOrdinal++)
      {
        for (int d=0; d<hgradOutputViewHost.extent_int(2); d++)
        {
          OutputScalar actual    = hgradOutputViewHost.access(fieldOrdinal,pointOrdinal,d);
          OutputScalar expected  = expectedValuesViewHost.access(fieldOrdinal,pointOrdinal,d);
        
          bool valuesMatch = true;
          bool valuesAreBothSmall = valuesAreSmall(actual, expected, tol);
          if (!valuesAreBothSmall)
          {
            TEUCHOS_TEST_FLOATING_EQUALITY(actual, expected, tol, out, valuesMatch);
          }
        
          if (!valuesMatch)
          {
            pointPassed = false;
            PointScalar x = inputPointsViewHost(pointOrdinal,0);
            PointScalar y = inputPointsViewHost(pointOrdinal,1);
            if (op == OPERATOR_VALUE) out << "values";
            else
            {
              int derivativeOrder = getOperatorOrder(op);
              if (derivativeOrder == 1)
              {
                out << "first ";
              }
              else if (derivativeOrder == 2)
              {
                out << "second ";
              }
              else if (derivativeOrder == 3)
              {
                out << "third ";
              }
              else
              {
                out << derivativeOrder << "th ";
              }
              out << "derivatives";
            }
            out << " for ("  << x << "," << y << ") differ for field ordinal " << fieldOrdinal;
            out << ": expected " << expected << "; actual " << actual;
            out << " (diff: " << expected-actual << ")" << std::endl;
            success = false;
          }
        }
      }
      if (!pointPassed)
      {
        out << "point " << pointOrdinal << " failed.\n";
      }
    }
  }
  
  // compare derivatives of order derivativeOrder in H(grad) with derivatives of order (derivativeOrder-1) in H(vol)
  template<class LineBasisFamily>
  void testDerivativesMatch(int polyOrder, int derivativeOrder, const double tol, Teuchos::FancyOStream &out, bool &success)
  {
    using namespace Intrepid2;
    using Teuchos::rcp;
    
    using DeviceType   = typename LineBasisFamily::DeviceType;
    using PointScalar  = typename LineBasisFamily::PointValueType;
    using OutputScalar = typename LineBasisFamily::OutputValueType;
    
    auto hgradBasis = getLineBasis<LineBasisFamily>(FUNCTION_SPACE_HGRAD, polyOrder);
    auto hvolBasis  = getLineBasis<LineBasisFamily>(FUNCTION_SPACE_HVOL, polyOrder);
    
    auto opGrad = Intrepid2::EOperator(OPERATOR_D1 - 1 + derivativeOrder);
    auto opVol  = (derivativeOrder > 1) ? Intrepid2::EOperator(OPERATOR_D1 - 2 + derivativeOrder) : OPERATOR_VALUE;
    
    int numPoints_1D = 5;
    shards::CellTopology lineTopo = shards::CellTopology(shards::getCellTopologyData<shards::Line<> >() );
    auto inputPointsView = getInputPointsView<PointScalar,DeviceType>(lineTopo, numPoints_1D);
    const int spaceDim = 1;
    
    auto hgradOutputView = getOutputView<OutputScalar,DeviceType>(FUNCTION_SPACE_HGRAD, opGrad, hgradBasis->getCardinality(), numPoints_1D, spaceDim);
    auto hvolOutputView  = getOutputView<OutputScalar,DeviceType>(FUNCTION_SPACE_HVOL, opVol, hvolBasis->getCardinality(), numPoints_1D, spaceDim);
    
    hgradBasis->getValues(hgradOutputView, inputPointsView, opGrad);
    hvolBasis->getValues(  hvolOutputView, inputPointsView, opVol);
    
    auto hgradOutputViewHost = getHostCopy(hgradOutputView);
    auto hvolOutputViewHost  = getHostCopy(hvolOutputView);
    auto inputPointsViewHost = getHostCopy(inputPointsView);
    
    for (int pointOrdinal=0; pointOrdinal<numPoints_1D; pointOrdinal++)
    {
      int pointPassed = true;
      for (int fieldOrdinal=2; fieldOrdinal<hgradBasis->getCardinality(); fieldOrdinal++)
      {
        // relationship between our H^1 basis and our L^2 (see the "Analytic" tests above for explicit polynomial expressions)
        // - nth derivative of H^1 fieldOrdinal i is one half of the (n-1)th derivative of L^2 fieldOrdinal i-1 (for i>=2)
        OutputScalar hgradValue = hgradOutputViewHost(fieldOrdinal,  pointOrdinal,0);
        OutputScalar hvolValue  =  hvolOutputViewHost(fieldOrdinal-1,pointOrdinal,0);
        
        OutputScalar actual = hgradValue;
        OutputScalar expected = OutputScalar(0.5 * hvolValue);
        
        bool valuesMatch = true;
        
        bool valuesAreBothSmall = valuesAreSmall(actual, expected, tol);
        if (!valuesAreBothSmall)
        {
          TEUCHOS_TEST_FLOATING_EQUALITY(actual, expected, tol, out, valuesMatch);
        }
        
        if (!valuesMatch)
        {
          pointPassed = false;
          PointScalar x = inputPointsViewHost(pointOrdinal,0);
          
          std::string gradDerivative, volDerivative;
          if (derivativeOrder == 1)
          {
            gradDerivative = "st";
            volDerivative  = "th";
          }
          else if (derivativeOrder == 2)
          {
            gradDerivative = "nd";
            volDerivative  = "st";
          }
          else if (derivativeOrder == 3)
          {
            gradDerivative = "rd";
            volDerivative  = "nd";
          }
          else if (derivativeOrder == 4)
          {
            gradDerivative = "th";
            volDerivative  = "rd";
          }
          else
          {
            gradDerivative = "th";
            volDerivative  = "th";
          }
          
          out << "values for "  << x  << " differ for field ordinal " << fieldOrdinal;
          out << ": h(grad) " << derivativeOrder << gradDerivative << " derivative is " << hgradValue << "; h(vol) " << derivativeOrder-1 << volDerivative << " derivative is " << hvolValue;
          out << " (diff: " << hgradValue-hvolValue << ")" << std::endl;
          success = false;
        }
        
      }
      if (!pointPassed)
      {
        out << "point " << pointOrdinal << " failed.\n";
      }
    }
  }

  // compare basis values between standard Intrepid2 nodal basis and our derived nodal basis family members
  template<class DerivedNodalBasisFamily, class StandardNodalBasisFamily>
  void testNodalBasisMatches(shards::CellTopology &cellTopo, Intrepid2::EFunctionSpace fs, Intrepid2::EOperator op, int polyOrder, const double tol,
                             Teuchos::FancyOStream &out, bool &success)
  {
    using namespace Intrepid2;
    using BasisPtr       = typename DerivedNodalBasisFamily::BasisPtr;
    using ExecutionSpace = typename DerivedNodalBasisFamily::ExecutionSpace;
    using DeviceType     = typename DerivedNodalBasisFamily::DeviceType;
    using Teuchos::rcp;
    
    BasisPtr derivedBasis, standardBasis;
    
    if (cellTopo.getKey() == shards::Line<>::key)
    {
      derivedBasis  = getLineBasis<DerivedNodalBasisFamily> (fs, polyOrder);
      standardBasis = getLineBasis<StandardNodalBasisFamily>(fs, polyOrder);
    }
    else if (cellTopo.getKey() == shards::Quadrilateral<>::key)
    {
      derivedBasis  = getQuadrilateralBasis<DerivedNodalBasisFamily> (fs, polyOrder); // derived basis supports both isotropic and anisotropic polyOrder
      standardBasis = getQuadrilateralBasis<StandardNodalBasisFamily>(fs, polyOrder); // standard basis is isotropic
    }
    else if (cellTopo.getKey() == shards::Hexahedron<>::key)
    {
      derivedBasis  = getHexahedronBasis<DerivedNodalBasisFamily> (fs, polyOrder); // derived basis supports both isotropic and anisotropic polyOrder
      standardBasis = getHexahedronBasis<StandardNodalBasisFamily>(fs, polyOrder); // isotropic
    }
    
    int standardCardinality = standardBasis->getCardinality();
    int derivedCardinality = derivedBasis->getCardinality();
    
    if (standardCardinality != derivedCardinality)
    {
      success = false;
      out << "FAILURE: standard basis cardinality (" << standardCardinality;
      out << ") does not match derived basis cardinality (" << derivedCardinality << ")\n";
    }
    
    int spaceDim = cellTopo.getDimension();
    // we do allow ordering to be different.  dofMapToDerived maps from standard field ordinal to the derived.
    // we use getDofCoords() to perform the mapping.
    using ScalarViewType         = typename DerivedNodalBasisFamily::Basis::ScalarViewType;
    using OrdinalTypeArray1D     = typename DerivedNodalBasisFamily::Basis::OrdinalTypeArray1D;
    OrdinalTypeArray1D     dofMapToStandard     = OrdinalTypeArray1D("dofMapToStandard",standardCardinality);
//    OrdinalTypeArray1DHost dofMapToStandardHost = Kokkos::create_mirror_view(dofMapToStandard);
    
    using ValueType    = typename ScalarViewType::value_type;
    using ResultLayout = typename DeduceLayout< ScalarViewType >::result_layout;
    using AllocatableScalarViewType = Kokkos::DynRankView<ValueType, ResultLayout, DeviceType >;
    
    AllocatableScalarViewType dofCoordsStandard ("dofCoordsStandard", standardCardinality, spaceDim);
    AllocatableScalarViewType dofCoordsDerived  ("dofCoordsDerived",  standardCardinality, spaceDim);
    standardBasis->getDofCoords(dofCoordsStandard);
    derivedBasis-> getDofCoords(dofCoordsDerived );
    
    Kokkos::deep_copy(dofMapToStandard, -1);
    
    Kokkos::parallel_for(standardCardinality, KOKKOS_LAMBDA (const int fieldOrdinalStandard)
    {
      // search for a fieldOrdinalDerived that matches
      bool matchFound = false;
      for (int fieldOrdinalDerived=0; fieldOrdinalDerived<standardCardinality; fieldOrdinalDerived++)
      {
        bool matches = true;
        for (int d=0; d<spaceDim; d++)
        {
          if (dofCoordsStandard(fieldOrdinalStandard,d) != dofCoordsDerived(fieldOrdinalDerived,d))
          {
            matches = false;
            break;
          }
        }
        
        if (matches)
        {
          dofMapToStandard(fieldOrdinalDerived) = fieldOrdinalStandard;
          matchFound = true;
          break;
        }
      }
      if (!matchFound)
      {
        // failure; abort
        device_assert(matchFound);
      }
    });
    // copy dofMapToDerived to host view
//    Kokkos::deep_copy(dofMapToStandardHost, dofMapToStandard);
    
    using PointScalar  = typename DerivedNodalBasisFamily::PointValueType;
    using OutputScalar = typename DerivedNodalBasisFamily::OutputValueType;
    
    int numPoints_1D = 5;
    auto inputPointsView = getInputPointsView<PointScalar,DeviceType>(cellTopo, numPoints_1D);
    int numPoints = inputPointsView.extent_int(0);
    auto standardOutputView = getOutputView<OutputScalar,DeviceType>(fs, op, standardCardinality, numPoints, spaceDim);
    auto derivedOutputView  = getOutputView<OutputScalar,DeviceType>(fs, op, standardCardinality, numPoints, spaceDim);
    
    standardBasis->getValues(standardOutputView, inputPointsView, op);
    derivedBasis->getValues(derivedOutputView, inputPointsView, op);
    
    // derived may be in a different order.  Remap so it's in the same order as standard basis
    auto derivedOutputViewRemapped = getOutputView<OutputScalar,DeviceType>(fs, op, standardCardinality, numPoints, spaceDim);
    
    using ViewIteratorScalar = Intrepid2::ViewIterator<decltype(derivedOutputView), OutputScalar>;
    const int entryCount = standardOutputView.size();

    Kokkos::RangePolicy < ExecutionSpace > policy(0,entryCount);
    Kokkos::parallel_for( policy,
    KOKKOS_LAMBDA (const int &enumerationIndex )
    {
      ViewIteratorScalar vi1(derivedOutputView);
      vi1.setEnumerationIndex(enumerationIndex);
      
      auto location = vi1.getLocation();
      
      const int derivedFieldOrdinal = location[0];
      const int standardFieldOrdinal = dofMapToStandard(derivedFieldOrdinal);
      
      location[0] = standardFieldOrdinal;
      
      ViewIteratorScalar vi2(derivedOutputViewRemapped);
      vi2.setLocation(location);
      vi2.set(vi1.get());
    }
    );
    
    testViewFloatingEquality(standardOutputView, derivedOutputViewRemapped, tol, tol, out, success);
  }
  
  template<class DerivedNodalBasisFamily, class StandardNodalBasisFamily>
  void runNodalBasisComparisonTests(const int polyOrderToTest, shards::CellTopology &cellTopo, std::vector<Intrepid2::EFunctionSpace> functionSpaces, std::vector<Intrepid2::EOperator> ops,
                                    const double tol, Teuchos::FancyOStream &out, bool &success)
  {
    using namespace Intrepid2;
    
    for (auto fs : functionSpaces)
    {
      for (auto op : ops)
      {
        testNodalBasisMatches<DerivedNodalBasisFamily,StandardNodalBasisFamily>(cellTopo, fs, op, polyOrderToTest, tol, out, success);
      }
    }
  }
  
//  TEUCHOS_UNIT_TEST( AnalyticPolynomialsMatch, Hierarchical_HGRAD_LINE )
//  {
//    const double tol = TEST_TOLERANCE_TIGHT;
//
//    std::vector<Intrepid2::EOperator> operators = {{OPERATOR_VALUE, OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5, OPERATOR_D6, OPERATOR_D7, OPERATOR_D8, OPERATOR_D9, OPERATOR_D10}};
//    for (auto op : operators)
//    {
//      testHierarchicalHGRAD_LINE_MatchesAnalyticValues(op, tol, out, success);
//    }
//  }
//
  TEUCHOS_UNIT_TEST( AnalyticPolynomialsMatch, Hierarchical_HVOL_LINE )
  {
    const double tol = TEST_TOLERANCE_TIGHT;

    std::vector<Intrepid2::EOperator> operators = {{OPERATOR_VALUE, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5, OPERATOR_D6, OPERATOR_D7, OPERATOR_D8, OPERATOR_D9, OPERATOR_D10}};
    for (auto op : operators)
    {
      testHierarchicalHVOL_LINE_MatchesAnalyticValues(op, tol, out, success);
    }
  }
  
  TEUCHOS_UNIT_TEST_TEMPLATE_2_DECL( AnalyticPolynomialsMatch, Hierarchical_HGRAD_LINE, OutputScalar, PointScalar )
  {
    const double tol = TEST_TOLERANCE_TIGHT;
    using DeviceType = DefaultTestDeviceType;
    
    std::vector<Intrepid2::EOperator> operators = {{OPERATOR_VALUE, OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5, OPERATOR_D6, OPERATOR_D7, OPERATOR_D8, OPERATOR_D9, OPERATOR_D10}};
    for (auto op : operators)
    {
      testHierarchicalHGRAD_LINE_MatchesAnalyticValues<DeviceType,OutputScalar,PointScalar>(op, tol, out, success);
    }
  }
  
  TEUCHOS_UNIT_TEST_TEMPLATE_2_DECL( AnalyticPolynomialsMatch, Hierarchical_HGRAD_TRI, OutputScalar, PointScalar )
  {
    const double tol = TEST_TOLERANCE_TIGHT;
    using DeviceType = DefaultTestDeviceType;
    
//    std::vector<Intrepid2::EOperator> operators = {{OPERATOR_VALUE, OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5, OPERATOR_D6, OPERATOR_D7, OPERATOR_D8, OPERATOR_D9, OPERATOR_D10}};
    std::vector<Intrepid2::EOperator> operators = {OPERATOR_VALUE};
    for (auto op : operators)
    {
      testHierarchicalHGRAD_TRIANGLE_MatchesAnalyticValues<DeviceType,OutputScalar,PointScalar>(op, tol, out, success);
    }
  }
  
  TEUCHOS_UNIT_TEST_TEMPLATE_2_DECL( AnalyticPolynomialsMatch, Hierarchical_LineBasisDerivativesAgree, OutputScalar, PointScalar )
  {
    const int maxPolyOrder = 10;
    const double tol = TEST_TOLERANCE_TIGHT;
    
    using DeviceType = DefaultTestDeviceType;
    using HierarchicalBasisFamily = HierarchicalBasisFamily<DeviceType,OutputScalar,PointScalar>;
    
    for (int derivativeOrder=1; derivativeOrder<=5; derivativeOrder++)
    {
      // compare derivatives of order derivativeOrder in H(grad) with derivatives of order (derivativeOrder-1) in H(vol)
      testDerivativesMatch<HierarchicalBasisFamily>(maxPolyOrder, derivativeOrder, tol, out, success);
    }
  }
  
  TEUCHOS_UNIT_TEST_TEMPLATE_2_DECL( AnalyticPolynomialsMatch, HierarchicalNodalComparisons, OutputScalar, PointScalar )
  {
    // the following should match in H(grad) and H(vol), but are not expected to match in H(curl) and H(div)
    // (the latter differ in that Standard uses another H(grad) instance to represent the L^2 component of H(curl) and H(div), while Derived uses H(vol))
    using DeviceType = DefaultTestDeviceType;
    using DerivedNodalBasisFamily  = Intrepid2::DerivedNodalBasisFamily<DeviceType,OutputScalar,PointScalar>;
    using StandardNodalBasisFamily = Intrepid2::NodalBasisFamily       <DeviceType,OutputScalar,PointScalar>;
    
    const double tol = TEST_TOLERANCE_TIGHT;
    
    shards::CellTopology lineTopo = shards::CellTopology(shards::getCellTopologyData<shards::Line<> >() );
    shards::CellTopology quadTopo = shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<> >() );
    shards::CellTopology hexTopo = shards::CellTopology(shards::getCellTopologyData<shards::Hexahedron<> >() );
    
    std::vector<EOperator> operators_dk = {OPERATOR_D1,OPERATOR_D2,OPERATOR_D3,OPERATOR_D4,OPERATOR_D5,OPERATOR_D6,OPERATOR_D7,OPERATOR_D8,OPERATOR_D9,OPERATOR_D10};
    // for Fad types under CUDA, we sometimes run into allocation errors with the highest-k dk operators in 3D.  Not sure why (are we actually running out of memory? It seems possible, but still surprises me a little), but for now we don't test beyond D8.
    std::vector<EOperator> operators_dk_3D = {OPERATOR_D1,OPERATOR_D2,OPERATOR_D3,OPERATOR_D4,OPERATOR_D5,OPERATOR_D6,OPERATOR_D7,OPERATOR_D8};
    
    // "harder" test is probably higher-order, but it's more expensive in higher dimensions.
    // the below are compromises according to spatial dimension.
    const int polyOrder_1D = 4;
    const int polyOrder_2D = 3;
    const int polyOrder_3D = 2;
    
    out << "Running 1D nodal basis comparison tests…\n";
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_1D, lineTopo, {FUNCTION_SPACE_HVOL}, {OPERATOR_VALUE}, tol, out, success);
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_1D, lineTopo, {FUNCTION_SPACE_HGRAD}, {OPERATOR_VALUE,OPERATOR_GRAD}, tol, out, success);
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_1D, lineTopo, {FUNCTION_SPACE_HGRAD}, operators_dk, tol, out, success);

    out << "Running 2D nodal quadrilateral basis comparison tests…\n";
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_2D, quadTopo, {FUNCTION_SPACE_HVOL}, {OPERATOR_VALUE}, tol, out, success);
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_2D, quadTopo, {FUNCTION_SPACE_HGRAD}, {OPERATOR_VALUE,OPERATOR_GRAD}, tol, out, success);
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_2D, quadTopo, {FUNCTION_SPACE_HGRAD}, operators_dk, tol, out, success);

    out << "Running 3D nodal hexahedron basis comparison tests…\n";
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_3D, hexTopo, {FUNCTION_SPACE_HVOL}, {OPERATOR_VALUE}, tol, out, success);
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_3D, hexTopo, {FUNCTION_SPACE_HGRAD}, {OPERATOR_VALUE,OPERATOR_GRAD}, tol, out, success);
    runNodalBasisComparisonTests<DerivedNodalBasisFamily, StandardNodalBasisFamily>(polyOrder_3D, hexTopo, {FUNCTION_SPACE_HGRAD}, operators_dk_3D, tol, out, success);
  }
                                                        
  INTREPID2_OUTPUTSCALAR_POINTSCALAR_TEST_INSTANT( AnalyticPolynomialsMatch, Hierarchical_HGRAD_LINE )
  INTREPID2_OUTPUTSCALAR_POINTSCALAR_TEST_INSTANT( AnalyticPolynomialsMatch, Hierarchical_LineBasisDerivativesAgree )
  INTREPID2_OUTPUTSCALAR_POINTSCALAR_TEST_INSTANT( AnalyticPolynomialsMatch, Hierarchical_HGRAD_TRI )
  INTREPID2_OUTPUTSCALAR_POINTSCALAR_TEST_INSTANT( AnalyticPolynomialsMatch, HierarchicalNodalComparisons )
} // namespace