1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
// @HEADER
// ************************************************************************
//
// Intrepid2 Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov),
// Mauro Perego (mperego@sandia.gov), or
// Nate Roberts (nvrober@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file BasisEquivalenceTests.cpp
\brief Tests to verify that bases that span the same space are equivalent.
\author Created by N.V. Roberts.
*/
#include "Teuchos_UnitTestHarness.hpp"
#include "Intrepid2_DefaultCubatureFactory.hpp"
#include "Intrepid2_FunctionSpaceTools.hpp"
#include "Intrepid2_HierarchicalBasisFamily.hpp"
#include "Intrepid2_NodalBasisFamily.hpp"
#include "Intrepid2_Types.hpp"
#include "Intrepid2_TestUtils.hpp"
#include "Intrepid2_HGRAD_LINE_C1_FEM.hpp"
#include "Intrepid2_HGRAD_HEX_C1_FEM.hpp"
#include "Intrepid2_HGRAD_HEX_C2_FEM.hpp"
#include <Kokkos_Core.hpp>
//#include "KokkosBlas3.hpp"
#include <Teuchos_LAPACK.hpp>
#include <Teuchos_BLAS.hpp>
using namespace Intrepid2;
namespace
{
//! solve a system Ax=b using LAPACK Cholesky factorization on host
template<class AViewType, class BXViewType>
int solveSystemUsingHostLapack(const AViewType &A_device, const BXViewType &bx_device)
{
using Scalar = typename AViewType::value_type;
auto A_host = getHostCopy(A_device);
auto bx_host = getHostCopy(bx_device);
// std::cout << "\nA = [";
// for (int i=0; i<A_host.extent_int(0); i++)
// {
// std::cout << "[ ";
// for (int j=0; j<A_host.extent(1); j++)
// {
// std::cout << A_host(i,j) << " ";
// }
// std::cout << "]; ";
// }
// std::cout << "]\n";
//
// std::cout << "b = [";
// for (int i=0; i<bx_host.extent_int(0); i++)
// {
// std::cout << "[ ";
// for (int j=0; j<bx_host.extent(1); j++)
// {
// std::cout << bx_host(i,j) << " ";
// }
// std::cout << "]; ";
// }
// std::cout << "]\n";
int N = A_host.extent_int(0);
TEUCHOS_TEST_FOR_EXCEPTION(N != A_host.extent_int(1), std::invalid_argument, "A must be square!");
int M = (bx_host.rank() == 1) ? 1 : bx_host.extent_int(1);
// since A is SPD, col/row major has no effect on the data
// but B's data may be transposed relative to what LAPACK expects (column-major order)
// so we allocate our own storage for B to make sure of the ordering
std::vector<double> B(N*M);
for (int j=0; j<M; j++)
{
for (int i=0; i<N; i++)
{
B[i+j*N] = bx_host(i,j);
}
}
char UPLO = 'L'; // lower-triangular
int result = 0;
int INFO;
Teuchos::LAPACK<int, Scalar> lapack;
// factor
lapack.POTRF(UPLO, N, A_host.data(), N, &INFO);
if (INFO != 0) result = INFO;
if (INFO != 0) std::cout << "ERROR: got " << INFO << " from POTRF.\n";
// back-substitute
lapack.POTRS(UPLO, N, M, A_host.data(), N, B.data(), N, &INFO);
if (INFO != 0) result = INFO;
// copy from our B container back to bx_host
for (int j=0; j<M; j++)
{
for (int i=0; i<N; i++)
{
bx_host(i,j) = B[i+j*N];
}
}
// std::cout << "x = [";
// for (int i=0; i<bx_host.extent_int(0); i++)
// {
// std::cout << "[ ";
// for (int j=0; j<bx_host.extent(1); j++)
// {
// std::cout << bx_host(i,j) << " ";
// }
// std::cout << "]; ";
// }
// std::cout << "]\n";
// solution should be in bx_host; copy to device
Kokkos::deep_copy(bx_device, bx_host);
return result;
}
//! Computes C := A*B or C := A^T*B
//! B is allowed to be either a (rank-2) matrix, or a higher-rank object. Either way, B's first (row) index should match A's column count.
template<class Rank2View>
void deviceGeneralizedMatrixMultiply(Rank2View &A, bool transposeA, Rank2View &B, Rank2View &C)
{
using DeviceType = DefaultTestDeviceType;
using Scalar = typename Rank2View::value_type;
const int N0 = transposeA ? A.extent_int(1) : A.extent_int(0);
const int N1 = transposeA ? A.extent_int(0) : A.extent_int(1);
TEUCHOS_TEST_FOR_EXCEPTION(N1 != B.extent_int(0), std::invalid_argument, "A column count should match B row count");
const int N2 = B.extent_int(1);
TEUCHOS_TEST_FOR_EXCEPTION(N0 != C.extent_int(0), std::invalid_argument, "C row count should match A row count");
TEUCHOS_TEST_FOR_EXCEPTION(N2 != C.extent_int(1), std::invalid_argument, "C column count should match B column count");
TEUCHOS_TEST_FOR_EXCEPTION(B.rank() != C.rank(), std::invalid_argument, "B's rank must match C's rank");
for (unsigned dim=2; dim<B.rank(); dim++)
{
TEUCHOS_TEST_FOR_EXCEPTION(B.extent_int(dim) != C.extent_int(dim), std::invalid_argument, "B and C must agree in all dimensions beyond the first two");
}
using ViewIteratorScalar = ViewIterator<ViewType<Scalar,DeviceType>, Scalar>;
Kokkos::parallel_for(N0, KOKKOS_LAMBDA(const int A_row_ordinal)
{
ViewIteratorScalar B_viewIterator(B);
ViewIteratorScalar C_viewIterator(C);
for (int B_col_ordinal=0; B_col_ordinal<N2; B_col_ordinal++)
{
C_viewIterator.setLocation({A_row_ordinal,B_col_ordinal,0,0,0,0,0});
do
{
Scalar value = 0.0;
auto B_location = C_viewIterator.getLocation();
B_location[0] = 0;
B_location[1] = B_col_ordinal;
B_viewIterator.setLocation(B_location);
for (int k=0; k<N1; k++)
{
B_viewIterator.getLocation()[0] = k;
if (transposeA)
{
value += A(k,A_row_ordinal) * B_viewIterator.get();
}
else
{
value += A(A_row_ordinal,k) * B_viewIterator.get();
}
}
C_viewIterator.set(value);
}
while (C_viewIterator.increment() > 1); // increment returns the rank of the leftmost index that was changed; when it changes B_col_ordinal, it's time to stop.
}
});
Kokkos::fence();
}
using namespace Intrepid2;
//! tests that two bases are equivalent; computes a conversion from one to the other and then uses that to confirm that the equivalence
//! holds for OPERATOR_VALUE (as it should by construction), as well as the operators passed in in opsToTest.
template<class DeviceType, class Basis1, class Basis2>
void testBasisEquivalence(Basis1 &basis1, Basis2 &basis2, const std::vector<EOperator> &opsToTest,
const double relTol, const double absTol, Teuchos::FancyOStream &out, bool &success)
{
// first, check that the bases agree on cardinality
TEST_EQUALITY(basis1.getCardinality(), basis2.getCardinality());
const int basisCardinality = basis1.getCardinality();
// get quadrature points for integrating up to 2*polyOrder
const int quadratureDegree = 2*basis1.getDegree();
using PointScalar = typename Basis1::PointValueType;
using WeightScalar = typename Basis1::OutputValueType;
using Scalar = WeightScalar;
DefaultCubatureFactory cub_factory;
auto cellTopoKey = basis1.getBaseCellTopology().getKey();
auto quadrature = cub_factory.create<DeviceType, PointScalar, WeightScalar>(cellTopoKey, quadratureDegree);
ordinal_type numRefPoints = quadrature->getNumPoints();
const int spaceDim = basis1.getBaseCellTopology().getDimension();
auto points = getView<PointScalar,DeviceType>( "quadrature points 1D ref cell", numRefPoints, spaceDim);
auto weights = getView<WeightScalar,DeviceType>("quadrature weights 1D ref cell", numRefPoints);
quadrature->getCubature(points, weights);
auto pointsHost = getHostCopy(points);
out << "Points being tested:\n";
for (int pointOrdinal=0; pointOrdinal<numRefPoints; pointOrdinal++)
{
out << pointOrdinal << ": " << "(";
for (int d=0; d<spaceDim; d++)
{
out << pointsHost(pointOrdinal,d);
if (d < spaceDim-1) out << ",";
}
out << ")\n";
}
auto functionSpace = basis1.getFunctionSpace();
// set up a projection of basis2 onto basis1
using Scalar = typename Basis1::OutputValueType;
auto basis1Values = getOutputView<Scalar,DeviceType>(functionSpace, OPERATOR_VALUE, basisCardinality, numRefPoints, spaceDim);
auto basis2Values = getOutputView<Scalar,DeviceType>(functionSpace, OPERATOR_VALUE, basisCardinality, numRefPoints, spaceDim);
basis1.getValues(basis1Values, points, OPERATOR_VALUE);
basis2.getValues(basis2Values, points, OPERATOR_VALUE);
// integrate basis1 against itself to compute the SPD matrix A that we'll use to set up the basis conversion system
ViewType<Scalar,DeviceType> basis1_vs_basis1 = getView<Scalar, DeviceType>("basis 1 vs basis 1", basisCardinality, basisCardinality);
// integrate basis1 against basis2 to compute the RHS b for the basis conversion system
ViewType<Scalar,DeviceType> basis1_vs_basis2 = getView<Scalar, DeviceType>("basis 1 vs basis 2", basisCardinality, basisCardinality);
Kokkos::parallel_for(basisCardinality, KOKKOS_LAMBDA(const int basisOrdinal1)
{
// we could use hierarchical parallelism to speed this up
for (int basisOrdinal2=0; basisOrdinal2<basisCardinality; basisOrdinal2++)
{
Scalar integral1v1 = 0.0, integral1v2 = 0.0;
for (int pointOrdinal=0; pointOrdinal<numRefPoints; pointOrdinal++)
{
const auto quadratureWeight = weights(pointOrdinal);
integral1v1 += quadratureWeight * basis1Values(basisOrdinal1,pointOrdinal) * basis1Values(basisOrdinal2,pointOrdinal);
integral1v2 += quadratureWeight * basis1Values(basisOrdinal1,pointOrdinal) * basis2Values(basisOrdinal2,pointOrdinal);
}
basis1_vs_basis1(basisOrdinal1,basisOrdinal2) = integral1v1;
basis1_vs_basis2(basisOrdinal1,basisOrdinal2) = integral1v2;
}
});
// each column in the following matrix will represent the corresponding member of basis 2 in terms of members of basis 1
ViewType<Scalar,DeviceType> basis1Coefficients = getView<Scalar, DeviceType>("basis 1 vs basis 2", basisCardinality, basisCardinality);
Kokkos::deep_copy(basis1Coefficients, basis1_vs_basis2);
solveSystemUsingHostLapack(basis1_vs_basis1, basis1Coefficients);
// for non-"DG" bases, check that the topological associations match up
// to check for DG-ness of basis, examine how many dofs are associated with the interior
shards::CellTopology cellTopo = basis1.getBaseCellTopology();
const int interiorDim = cellTopo.getDimension();
const int interiorSubcellOrdinal = 0;
const int firstDofOrdinalForSubcell = 0;
int basis1InteriorCardinality = 0, basis2InteriorCardinality = 0;
int basis1FirstInterior = -1, basis2FirstInterior = -1;
if (basis1.getAllDofOrdinal().extent_int(0) > interiorDim)
{
basis1FirstInterior = basis1.getAllDofOrdinal()(interiorDim, interiorSubcellOrdinal, firstDofOrdinalForSubcell);
}
if (basis2.getAllDofOrdinal().extent_int(0) > interiorDim)
{
basis2FirstInterior = basis2.getAllDofOrdinal()(interiorDim, interiorSubcellOrdinal, firstDofOrdinalForSubcell);
}
// if there are no interior dofs, we'll get a -1 value
if (basis1FirstInterior != -1)
{
// at index 3, dof tag stores the total dof count associated with the subcell (here, the interior)
basis1InteriorCardinality = basis1.getDofTag(basis1FirstInterior)(3);
}
if (basis2FirstInterior != -1)
{
// at index 3, dof tag stores the total dof count associated with the subcell (here, the interior)
basis2InteriorCardinality = basis2.getDofTag(basis2FirstInterior)(3);
}
const bool basis1IsDG = (basis1InteriorCardinality == basisCardinality);
const bool basis2IsDG = (basis2InteriorCardinality == basisCardinality);
const bool neitherBasisIsDG = !basis1IsDG && !basis2IsDG;
if (neitherBasisIsDG)
{
auto basis1CoefficientsHost = getHostCopy(basis1Coefficients);
// if neither basis is DG, then we can expect them to have matching counts on basis members
// associated with a given subcell. We can also expect the representation of of members of basis1
// on a given subcell in terms of basis2 to involve at least some members of basis2 associated with the same
// subcell. (We can check this by examining the weights in basis1Coefficients.)
for (int subcellDim=0; subcellDim<=interiorDim; subcellDim++)
{
out << "checking subcells of dimension " << subcellDim << std::endl;
// if there are no dofs for this subcell dimension and greater, then getAllDofOrdinal() won't have
// an entry for subcellDim. The following guards against that:
if (basis1.getAllDofOrdinal().extent_int(0) <= subcellDim)
{
// basis1 has no dofs for this subcell dim. Check that basis2 also does not:
TEST_ASSERT(basis2.getAllDofOrdinal().extent_int(0) <= subcellDim);
break; // we've already checked all subcell dimensions that have any dofs associated with them
}
const int subcellCount = cellTopo.getSubcellCount(subcellDim);
for (int subcellOrdinal=0; subcellOrdinal<subcellCount; subcellOrdinal++)
{
// need to find the first dof ordinal for the subcell to get the basis cardinality on the subcell
const int basis1FirstDofOrdinal = basis1.getAllDofOrdinal()(subcellDim, subcellOrdinal, firstDofOrdinalForSubcell);
const int basis2FirstDofOrdinal = basis2.getAllDofOrdinal()(subcellDim, subcellOrdinal, firstDofOrdinalForSubcell);
// if there are no dofs on the subcell, we'll get a -1 value
if ((basis1FirstDofOrdinal == -1) || (basis2FirstDofOrdinal == -1))
{
// if one of the bases has no dofs on the subcell, then both should:
TEST_ASSERT((basis1FirstDofOrdinal == -1) && (basis2FirstDofOrdinal == -1));
// if either of the bases has no dofs on the subcell, we should continue with the next subcell
continue;
}
// at index 3, dof tag stores the total dof count associated with the subcell
const int basis1SubcellCardinality = basis1.getDofTag(basis1FirstDofOrdinal)(3);
const int basis2SubcellCardinality = basis2.getDofTag(basis2FirstDofOrdinal)(3);
TEST_EQUALITY(basis1SubcellCardinality, basis2SubcellCardinality);
// if we fail the cardinality check, not much point in checking the coefficients
if (basis1SubcellCardinality != basis2SubcellCardinality) continue;
out << "subcell " << subcellOrdinal << " has " << basis1SubcellCardinality << " dofs.\n";
std::vector<ordinal_type> basis1SubcellDofOrdinals(basis1SubcellCardinality);
std::vector<ordinal_type> basis2SubcellDofOrdinals(basis2SubcellCardinality);
for (int subcellDofOrdinal=0; subcellDofOrdinal<basis1SubcellCardinality; subcellDofOrdinal++)
{
basis1SubcellDofOrdinals[subcellDofOrdinal] = basis1.getAllDofOrdinal()(subcellDim, subcellOrdinal, subcellDofOrdinal);
basis2SubcellDofOrdinals[subcellDofOrdinal] = basis2.getAllDofOrdinal()(subcellDim, subcellOrdinal, subcellDofOrdinal);
}
for (int subcellDofOrdinal=0; subcellDofOrdinal<basis1SubcellCardinality; subcellDofOrdinal++)
{
// each column in basis1Coefficients represents the corresponding member of basis 2 in terms of members of basis 1
const int basis2DofOrdinal = basis2SubcellDofOrdinals[subcellDofOrdinal];
out << "checking representation of basis2 dof ordinal " << basis2DofOrdinal << std::endl;
// look for at least one member of basis1's representation on the subcell
bool hasNonzeroCoefficient = false;
for (const int basis1DofOrdinal : basis1SubcellDofOrdinals)
{
Scalar basisCoefficient = basis1CoefficientsHost(basis1DofOrdinal,basis2DofOrdinal);
bool nonzeroCoefficient = (std::abs(basisCoefficient) > absTol);
if (nonzeroCoefficient)
{
out << "basis coefficient " << basisCoefficient << " is nonzero (absTol = " << absTol << ").\n";
hasNonzeroCoefficient = true;
}
}
TEST_ASSERT(hasNonzeroCoefficient);
}
}
}
}
// compute the values for basis2 using basis1Coefficients, basis1Values, and confirm that these agree with basisValues2
auto basis2ValuesFromBasis1 = getOutputView<Scalar,DeviceType>(functionSpace, OPERATOR_VALUE, basisCardinality, numRefPoints, spaceDim);
deviceGeneralizedMatrixMultiply(basis1Coefficients, true, basis1Values, basis2ValuesFromBasis1); // true: transpose
testViewFloatingEquality(basis2Values, basis2ValuesFromBasis1, relTol, absTol, out, success, "expected", "actual");
for (auto op : opsToTest)
{
out << "** Testing operator " << EOperatorToString(op) << " **\n";
auto basis1OpValues = getOutputView<Scalar,DeviceType>(functionSpace, op, basisCardinality, numRefPoints, spaceDim);
auto basis2OpValues = getOutputView<Scalar,DeviceType>(functionSpace, op, basisCardinality, numRefPoints, spaceDim);
basis1.getValues(basis1OpValues, points, op);
basis2.getValues(basis2OpValues, points, op);
// compute the values for basis2 using basis1Coefficients, basis1Values, and confirm that these agree with basisValues2
auto basis2OpValuesFromBasis1 = getOutputView<Scalar,DeviceType>(functionSpace, op, basisCardinality, numRefPoints, spaceDim);
deviceGeneralizedMatrixMultiply(basis1Coefficients, true, basis1OpValues, basis2OpValuesFromBasis1); // true: transpose
testViewFloatingEquality(basis2OpValues, basis2OpValuesFromBasis1, relTol, absTol, out, success, "expected", "actual");
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, LineNodalVersusHierarchicalCG_HGRAD )
{
using HierarchicalBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_LINE;
using NodalBasis = NodalBasisFamily<DefaultTestDeviceType>::HGRAD_LINE;
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-13; // 2e-14 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
const double absTol=1e-13; // 4e-14 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<5; polyOrder++)
{
HierarchicalBasis hierarchicalBasis(polyOrder);
NodalBasis nodalBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(nodalBasis, hierarchicalBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, LineNodalCnVersusNodalC1_HGRAD )
{
using CnBasis = Intrepid2::Basis_HGRAD_LINE_Cn_FEM<DefaultTestDeviceType>;
using C1Basis = Intrepid2::Basis_HGRAD_LINE_C1_FEM<DefaultTestDeviceType>;
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-15; // 3e-16 is sharp on development setup for polyOrder=1; relaxing for potential architectural differences
const double absTol=0.0; // since there are no quadrature points for polyOrder=1 for which the (analytical) c1Basis evaluates to 0, absTol turns out not to enter into it.
CnBasis cnBasis(1);
C1Basis c1Basis;
testBasisEquivalence<DefaultTestDeviceType>(cnBasis, c1Basis, opsToTest, relTol, absTol, out, success);
}
TEUCHOS_UNIT_TEST( BasisEquivalence, LineHierarchicalDGVersusHierarchicalCG_HGRAD )
{
using CGBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_LINE;
using DGBasis = DGHierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_LINE;
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-13; // 6e-15 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
const double absTol=1e-12; // 1e-13 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<5; polyOrder++)
{
CGBasis cgBasis(polyOrder);
DGBasis dgBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(cgBasis, dgBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, QuadrilateralHierarchicalDGVersusHierarchicalCG_HGRAD )
{
using CGBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_QUAD;
using DGBasis = DGHierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_QUAD;
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-12; // 2e-13 is sharp on development setup for polyOrder=3; relaxing for potential architectural differences
const double absTol=1e-11; // 5e-13 is sharp on development setup for polyOrder=3; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<4; polyOrder++)
{
CGBasis cgBasis(polyOrder);
DGBasis dgBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(cgBasis, dgBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, QuadrilateralNodalVersusHierarchicalCG_HGRAD )
{
using HierarchicalBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_QUAD;
using NodalBasis = NodalBasisFamily<DefaultTestDeviceType>::HGRAD_QUAD;
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-13; // 8e-14 is sharp on development setup for polyOrder=3; relaxing for potential architectural differences
const double absTol=1e-12; // 2e-13 is sharp on development setup for polyOrder=3; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<4; polyOrder++)
{
HierarchicalBasis hierarchicalBasis(polyOrder);
NodalBasis nodalBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(nodalBasis, hierarchicalBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, HexahedronHierarchicalDGVersusHierarchicalCG_HGRAD )
{
using CGBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_HEX;
using DGBasis = DGHierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_HEX;
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-11; // 2e-12 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
const double absTol=1e-11; // 9e-13 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
for (int polyOrder=1; polyOrder<3; polyOrder++)
{
CGBasis cgBasis(polyOrder);
DGBasis dgBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(cgBasis, dgBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, HexahedronNodalVersusHierarchicalCG_HGRAD )
{
using HierarchicalBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_HEX;
using NodalBasis = NodalBasisFamily<DefaultTestDeviceType>::HGRAD_HEX;
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-12; // 2e-13 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
const double absTol=1e-13; // 2e-14 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
for (int polyOrder=1; polyOrder<3; polyOrder++)
{
HierarchicalBasis hierarchicalBasis(polyOrder);
NodalBasis nodalBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(nodalBasis, hierarchicalBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, HexahedronNodalCnVersusNodalC1_HGRAD )
{
using CnBasis = Intrepid2::Basis_HGRAD_HEX_Cn_FEM<DefaultTestDeviceType>;
using C1Basis = Intrepid2::Basis_HGRAD_HEX_C1_FEM<DefaultTestDeviceType>;
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-13; // ____ is sharp on development setup for polyOrder=1; relaxing for potential architectural differences
const double absTol=1e-13; // ____ is sharp on development setup for polyOrder=1; relaxing for potential architectural differences
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4, OPERATOR_D5};
const int polyOrder = 1;
CnBasis cnBasis(polyOrder);
C1Basis c1Basis;
testBasisEquivalence<DefaultTestDeviceType>(cnBasis, c1Basis, opsToTest, relTol, absTol, out, success);
}
TEUCHOS_UNIT_TEST( BasisEquivalence, HexahedronNodalCnVersusNodalC2_HGRAD )
{
using CnBasis = Intrepid2::Basis_HGRAD_HEX_Cn_FEM<DefaultTestDeviceType>;
using C2Basis = Intrepid2::Basis_HGRAD_HEX_C2_FEM<DefaultTestDeviceType>;
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-13; // 4e-14 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
const double absTol=1e-14; // 2e-15 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
// C2 throws an exception for OPERATOR_D5 and OPERATOR_D6, with a message that these are unsupported.
// I'm not sure why that is, but for that reason we don't test with OPERATOR_D5 here, as we do in other tests
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1, OPERATOR_D2, OPERATOR_D3, OPERATOR_D4};
const int polyOrder = 2;
CnBasis cnBasis(polyOrder);
C2Basis c2Basis;
testBasisEquivalence<DefaultTestDeviceType>(cnBasis, c2Basis, opsToTest, relTol, absTol, out, success);
}
TEUCHOS_UNIT_TEST( BasisEquivalence, TetrahedronNodalCnVersusNodalC2_HGRAD )
{
using CnBasis = Intrepid2::Basis_HGRAD_TET_Cn_FEM<DefaultTestDeviceType>;
using C2Basis = Intrepid2::Basis_HGRAD_TET_C2_FEM<DefaultTestDeviceType>;
// OPERATOR_D2 and above are not supported by either the nodal or the hierarchical basis at present...
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-12; // 2e-14 is sharp on development setup; relaxing for potential architectural differences
const double absTol=1e-13; // 3e-15 is sharp on development setup; relaxing for potential architectural differences
CnBasis cnBasis(2);
C2Basis c2Basis;
testBasisEquivalence<DefaultTestDeviceType>(cnBasis, c2Basis, opsToTest, relTol, absTol, out, success);
}
TEUCHOS_UNIT_TEST( BasisEquivalence, TetrahedronHierarchicalDGVersusHierarchicalCG_HGRAD )
{
using CGBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_TET;
using DGBasis = DGHierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_TET;
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-6; // 3e-8 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
const double absTol=1e-9; // 5e-11 is sharp on development setup for polyOrder=2; relaxing for potential architectural differences
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1};
for (int polyOrder=1; polyOrder<7; polyOrder++)
{
CGBasis cgBasis(polyOrder);
DGBasis dgBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(cgBasis, dgBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, TetrahedronNodalVersusHierarchicalCG_HGRAD )
{
using HierarchicalBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_TET;
using NodalBasis = NodalBasisFamily<DefaultTestDeviceType>::HGRAD_TET;
// OPERATOR_D2 and above are not supported by either the nodal or the hierarchical basis at present...
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-6; // 3e-08 is sharp on development setup for polyOrder=6; relaxing for potential architectural differences
const double absTol=1e-10; // 3e-12 is sharp on development setup for polyOrder=6; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<7; polyOrder++)
{
HierarchicalBasis hierarchicalBasis(polyOrder);
NodalBasis nodalBasis(polyOrder);
// auto cellTopo = nodalBasis.getBaseCellTopology();
// const int faceDim = 2;
// for (int intrepid2FaceOrdinal=0; intrepid2FaceOrdinal<4; intrepid2FaceOrdinal++)
// {
// int vertex0 = cellTopo.getNodeMap(faceDim, intrepid2FaceOrdinal, 0);
// int vertex1 = cellTopo.getNodeMap(faceDim, intrepid2FaceOrdinal, 1);
// int vertex2 = cellTopo.getNodeMap(faceDim, intrepid2FaceOrdinal, 2);
// std::cout << "face " << intrepid2FaceOrdinal << ": " << vertex0 << vertex1 << vertex2 << std::endl;
// }
testBasisEquivalence<DefaultTestDeviceType>(nodalBasis, hierarchicalBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, TriangleNodalVersusHierarchicalCG_HGRAD )
{
using HierarchicalBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_TRI;
using NodalBasis = NodalBasisFamily<DefaultTestDeviceType>::HGRAD_TRI;
// OPERATOR_D2 and above are not supported by either the nodal or the hierarchical basis at present...
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-11; // 7e-13 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
const double absTol=1e-12; // 2e-14 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<5; polyOrder++)
{
HierarchicalBasis hierarchicalBasis(polyOrder);
NodalBasis nodalBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(nodalBasis, hierarchicalBasis, opsToTest, relTol, absTol, out, success);
}
}
TEUCHOS_UNIT_TEST( BasisEquivalence, TriangleHierarchicalCGVersusHierarchicalDG_HGRAD )
{
using CGBasis = HierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_TRI;
using DGBasis = DGHierarchicalBasisFamily<DefaultTestDeviceType>::HGRAD_TRI;
// OPERATOR_D2 and above are not supported by either the nodal or the hierarchical basis at present...
std::vector<EOperator> opsToTest {OPERATOR_GRAD, OPERATOR_D1};
// these tolerances are selected such that we have a little leeway for architectural differences
// (It is true, though, that we incur a fair amount of floating point error for higher order bases in higher dimensions)
const double relTol=1e-11; // 7e-13 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
const double absTol=1e-12; // 2e-14 is sharp on development setup for polyOrder=4; relaxing for potential architectural differences
for (int polyOrder=1; polyOrder<5; polyOrder++)
{
CGBasis cgBasis(polyOrder);
DGBasis dgBasis(polyOrder);
testBasisEquivalence<DefaultTestDeviceType>(cgBasis, dgBasis, opsToTest, relTol, absTol, out, success);
}
}
} // namespace
|