1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
// @HEADER
// ************************************************************************
//
// Intrepid2 Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov),
// Mauro Perego (mperego@sandia.gov), or
// Nate Roberts (nvrober@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file DataTests.cpp
\brief Tests against Intrepid2::Data.
\author Created by N.V. Roberts.
*/
#include "Teuchos_UnitTestHarness.hpp"
#include "Intrepid2_Data.hpp"
#include "Intrepid2_ScalarView.hpp"
#include "Intrepid2_Types.hpp"
#include "Intrepid2_TestUtils.hpp"
namespace
{
using namespace Intrepid2;
/** \brief Data has facilities for in-place combinations of logical data. Suppose you have two containers of logical shape (C,P), one of which is constant across cells, the other of which is constant across points. To combine these (e.g., sum them together entrywise), you want a container that varies in both cells and points. The test below exercises the facility for allocation of the combined container.
*/
TEUCHOS_UNIT_TEST( Data, AllocateInPlaceCombinationResult )
{
// test allocateInPlaceCombinationResult()
// Use two Data objects A and B, each with logical shape (5,9,15) -- (C,F,P), say.
// with A having variation types of GENERAL, MODULAR, and CONSTANT,
// and B having variation types of CONSTANT, CONSTANT, and GENERAL.
// Result should have variation types of GENERAL, MODULAR, GENERAL.
using DeviceType = DefaultTestDeviceType;
using Scalar = double;
const int rank = 3;
const int cellCount = 5;
const int fieldCount = 9;
const int pointCount = 15;
const int fieldCountA = 3; // A is modular in field dimension, with variation mod 3.
auto AView = getView<Scalar,DeviceType>("A", cellCount, fieldCountA);
auto BView = getView<Scalar,DeviceType>("B", pointCount);
auto ABView = getView<Scalar,DeviceType>("A+B", cellCount, fieldCountA, pointCount);
Kokkos::Array<int,rank> extents {cellCount, fieldCount, pointCount};
Kokkos::Array<DataVariationType,rank> A_variation {GENERAL, MODULAR, CONSTANT};
Kokkos::Array<DataVariationType,rank> B_variation {CONSTANT, CONSTANT, GENERAL};
Data<Scalar,DeviceType> A(AView,extents,A_variation);
Data<Scalar,DeviceType> B(BView,extents,B_variation);
// expected variation for A+B:
Kokkos::Array<DataVariationType,3> AB_variation {GENERAL, MODULAR, GENERAL};
// expected Data object for A+B:
Data<Scalar,DeviceType> AB_expected(ABView,extents,AB_variation);
auto AB_actual = Data<Scalar,DeviceType>::allocateInPlaceCombinationResult(A, B);
TEST_EQUALITY(AB_actual.rank(), AB_expected.rank());
for (int d=0; d<rank; d++)
{
const auto actualVariationType = AB_actual.getVariationTypes()[d];
const auto expectedVariationType = AB_expected.getVariationTypes()[d];
TEST_EQUALITY(actualVariationType, expectedVariationType);
const auto actualVariationModulus = AB_actual.getVariationModulus(d);
const auto expectedVariationModulus = AB_expected.getVariationModulus(d);
TEST_EQUALITY(actualVariationModulus, expectedVariationModulus);
const auto actualExtent = AB_actual.extent_int(d);
const auto expectedExtent = AB_expected.extent_int(d);
TEST_EQUALITY(actualExtent, expectedExtent);
}
TEST_EQUALITY(AB_actual.getUnderlyingViewRank(), AB_expected.getUnderlyingViewRank());
const int dataRank = AB_expected.getUnderlyingViewRank();
if (AB_actual.getUnderlyingViewRank() == dataRank)
{
for (int d=0; d<dataRank; d++)
{
const auto actualDataExtent = AB_actual.getDataExtent(d);
const auto expectedDataExtent = AB_expected.getDataExtent(d);
TEST_EQUALITY(actualDataExtent, expectedDataExtent);
}
}
}
TEUCHOS_UNIT_TEST( Data, CombinedDimensionInfo )
{
// test free function, combinedDimensionInfo()
DimensionInfo A_dimInfo;
DimensionInfo B_dimInfo;
DimensionInfo AB_dimInfo;
A_dimInfo.logicalExtent = 15;
B_dimInfo.logicalExtent = 15;
AB_dimInfo.logicalExtent = 15;
A_dimInfo.blockPlusDiagonalLastNonDiagonal = -1;
B_dimInfo.blockPlusDiagonalLastNonDiagonal = -1;
AB_dimInfo.blockPlusDiagonalLastNonDiagonal = -1;
A_dimInfo.variationModulus = 15;
B_dimInfo.variationModulus = 1;
AB_dimInfo.variationModulus = 15;
A_dimInfo.variationType = GENERAL;
B_dimInfo.variationType = CONSTANT;
AB_dimInfo.variationType = GENERAL;
A_dimInfo.dataExtent = A_dimInfo.logicalExtent / ( A_dimInfo.logicalExtent / A_dimInfo.variationModulus);
B_dimInfo.dataExtent = B_dimInfo.logicalExtent / ( B_dimInfo.logicalExtent / B_dimInfo.variationModulus);
AB_dimInfo.dataExtent = AB_dimInfo.logicalExtent / (AB_dimInfo.logicalExtent / AB_dimInfo.variationModulus);
// combinedDimensionInfo should commute, so let's test both directions:
DimensionInfo AB_dimInfoActual_LR = combinedDimensionInfo(A_dimInfo, B_dimInfo);
DimensionInfo AB_dimInfoActual_RL = combinedDimensionInfo(B_dimInfo, A_dimInfo);
std::vector<DimensionInfo> actualCombinations {AB_dimInfoActual_LR, AB_dimInfoActual_RL};
for (const auto & dimInfoActual : actualCombinations)
{
TEST_EQUALITY(dimInfoActual.logicalExtent, AB_dimInfo.logicalExtent);
TEST_EQUALITY(dimInfoActual.dataExtent, AB_dimInfo.dataExtent);
TEST_EQUALITY(dimInfoActual.variationType, AB_dimInfo.variationType);
TEST_EQUALITY(dimInfoActual.variationModulus, AB_dimInfo.variationModulus);
}
}
// #pragma mark Data: EmptyDataMarkedAsInvalid
/** \brief When Data containers are constructed without arguments, the isValid() method should return false. This test confirms that that is the case.
*/
TEUCHOS_UNIT_TEST( Data, EmptyDataMarkedAsInvalid )
{
using DeviceType = DefaultTestDeviceType;
// check the new default constructor for Data
Data<double,DeviceType> emptyData;
TEST_EQUALITY(emptyData.isValid(), false); // empty data container should return false from isValid()
}
// #pragma mark Data: GetWritableEntry
/** \brief Data has a method intended primarily for internal use, getWritableEntry(), which returns an lvalue reference to a specified location. This test uses that method to set a particular entry, and checks that the destination data object has the correct value.
*/
TEUCHOS_UNIT_TEST( Data, GetWritableEntry )
{
using Scalar = double;
using DeviceType = DefaultTestDeviceType;
// no arithmetic, so comparisons should be exact
double relTol = 0.0;
double absTol = 0.0;
const int numRows = 3;
const int numCols = 3;
const Scalar lastValueToSet = 18;
auto zeroView = getView<Scalar,DeviceType>("GetWritableEntry view", numRows, numCols);
Kokkos::deep_copy(zeroView,0);
Data<double,DeviceType> data(zeroView);
using ExecSpaceType = typename DeviceType::execution_space;
Kokkos::RangePolicy<ExecSpaceType> policy(0,1); // trivial policy: 1 entry
Kokkos::parallel_for("set lastVal", policy,
KOKKOS_LAMBDA (const int &i) {
auto & lastVal = data.getWritableEntry(numRows-1, numCols-1);
lastVal = lastValueToSet;
});
auto expectedView = getView<Scalar,DeviceType>("GetWritableEntry expected view", numRows, numCols);
auto expectedViewHost = Kokkos::create_mirror_view(expectedView);
Kokkos::deep_copy(expectedViewHost,0);
expectedViewHost(numRows-1,numCols-1) = lastValueToSet;
Kokkos::deep_copy(expectedView, expectedViewHost);
testFloatingEquality2(expectedView, data, relTol, absTol, out, success);
}
/** \brief Data has facilities for in-place combinations of logical data. Suppose you have two containers of logical shape (C,P), one of which is constant across cells, the other of which is constant across points. To combine these (e.g., sum them together entrywise), you want a container that varies in both cells and points. The test below exercises the facility for allocation of the combined container.
*/
TEUCHOS_UNIT_TEST( Data, InPlaceSum )
{
double relTol = 1e-13;
double absTol = 1e-13;
// Use two Data objects A and B, each with logical shape (5,9,15) -- (C,F,P), say.
// with A having variation types of GENERAL, MODULAR, and CONSTANT,
// and B having variation types of CONSTANT, CONSTANT, and GENERAL.
// Result should have variation types of GENERAL, MODULAR, GENERAL.
using DeviceType = DefaultTestDeviceType;
using Scalar = double;
const int rank = 3;
const int cellCount = 5;
const int fieldCount = 9;
const int pointCount = 15;
auto formula_A = [] (int cellOrdinal, int fieldOrdinal, int pointOrdinal) -> double
{
// varies modulus 3 in fieldOrdinal; constant pointwise
return double(cellOrdinal) + double(fieldOrdinal % 3);
};
auto formula_B = [] (int cellOrdinal, int fieldOrdinal, int pointOrdinal) -> double
{
// constant in cell, field; varies pointwise
return double(pointOrdinal);
};
auto sum = [] (const Scalar &a, const Scalar &b) -> Scalar
{
return a + b;
};
const int fieldCountA = 3; // A is modular in field dimension, with variation mod 3.
auto AView = getView<Scalar,DeviceType>("A", cellCount, fieldCountA);
auto BView = getView<Scalar,DeviceType>("B", pointCount);
auto ABView = getView<Scalar,DeviceType>("A+B", cellCount, fieldCountA, pointCount);
auto AViewHost = Kokkos::create_mirror(AView);
auto BViewHost = Kokkos::create_mirror(BView);
auto ABViewHost = Kokkos::create_mirror(ABView);
for (int cellOrdinal=0; cellOrdinal<cellCount; cellOrdinal++)
{
for (int fieldOrdinal=0; fieldOrdinal<fieldCountA; fieldOrdinal++)
{
for (int pointOrdinal=0; pointOrdinal<pointCount; pointOrdinal++)
{
auto a = formula_A(cellOrdinal,fieldOrdinal,pointOrdinal);
auto b = formula_B(cellOrdinal,fieldOrdinal,pointOrdinal);
AViewHost (cellOrdinal,fieldOrdinal) = a;
BViewHost (pointOrdinal) = b;
ABViewHost(cellOrdinal,fieldOrdinal,pointOrdinal) = sum(a,b);
}
}
}
Kokkos::deep_copy( AView, AViewHost);
Kokkos::deep_copy( BView, BViewHost);
Kokkos::deep_copy(ABView, ABViewHost);
Kokkos::Array<int,rank> extents {cellCount, fieldCount, pointCount};
Kokkos::Array<DataVariationType,rank> A_variation {GENERAL, MODULAR, CONSTANT};
Kokkos::Array<DataVariationType,rank> B_variation {CONSTANT, CONSTANT, GENERAL};
Data<Scalar,DeviceType> A(AView,extents,A_variation);
Data<Scalar,DeviceType> B(BView,extents,B_variation);
// expected variation for A+B:
Kokkos::Array<DataVariationType,3> AB_variation {GENERAL, MODULAR, GENERAL};
// expected Data object for A+B:
Data<Scalar,DeviceType> AB_expected(ABView,extents,AB_variation);
auto AB_actual = Data<Scalar,DeviceType>::allocateInPlaceCombinationResult(A, B);
AB_actual.storeInPlaceSum(A, B);
// test AB_actual equals AB_expected. (This will iterate over the logical extents.)
testFloatingEquality3(AB_actual, AB_expected, relTol, absTol, out, success);
}
// #pragma mark Data: MatVec
/** \brief Data provides matrix-vector multiplication support. This method checks correctness of the computed mat-vec for a particular case involving a 2x2 matrix and a 2x1 vector.
*/
TEUCHOS_UNIT_TEST( Data, MatVec )
{
double relTol = 1e-13;
double absTol = 1e-13;
using DeviceType = DefaultTestDeviceType;
using Scalar = double;
const int spaceDim = 2;
auto matrixView = getView<Scalar,DeviceType>("full matrix", spaceDim, spaceDim);
auto matrixViewHost = Kokkos::create_mirror(matrixView);
matrixViewHost(0,0) = 1.0; matrixViewHost(0,1) = 2.0;
matrixViewHost(1,0) = -1.0; matrixViewHost(1,1) = 3.0;
Kokkos::deep_copy(matrixView, matrixViewHost);
auto vecView = getView<Scalar,DeviceType>("vector", spaceDim);
auto vecViewHost = Kokkos::create_mirror(vecView);
vecViewHost(0) = 1.0;
vecViewHost(1) = 2.0;
Kokkos::deep_copy(vecView, vecViewHost);
auto expectedResultView = getView<Scalar,DeviceType>("result vector", spaceDim);
auto expectedResultViewHost = Kokkos::create_mirror(expectedResultView);
expectedResultViewHost(0) = matrixViewHost(0,0) * vecViewHost(0) + matrixViewHost(0,1) * vecViewHost(1);
expectedResultViewHost(1) = matrixViewHost(1,0) * vecViewHost(0) + matrixViewHost(1,1) * vecViewHost(1);
Kokkos::deep_copy(expectedResultView, expectedResultViewHost);
Data<Scalar,DeviceType> matData(matrixView);
Data<Scalar,DeviceType> vecData(vecView);
auto actualResultData = Data<Scalar,DeviceType>::allocateMatVecResult(matData, vecData);
actualResultData.storeMatVec(matData, vecData);
testFloatingEquality1(expectedResultView, actualResultData.getUnderlyingView1(), relTol, absTol, out, success);
}
// #pragma mark Data: MatMat
/** \brief Data provides matrix-matrix multiplication support. This method checks correctness of the computed mat-mat for a particular case involving two 2x2 matrices; here, the matrices are each stored in a rank-3 View, and the Data object is a thin wrapper around these (i.e., the DataVariationType for each of the dimensions in data is GENERAL).
*/
TEUCHOS_UNIT_TEST( Data, MatMat )
{
double relTol = 1e-13;
double absTol = 1e-13;
using DeviceType = DefaultTestDeviceType;
using Scalar = double;
const int spaceDim = 2;
const int cellCount = 1;
auto leftMatrixView = getView<Scalar,DeviceType>("left matrix", cellCount, spaceDim, spaceDim);
auto leftMatrixViewHost = Kokkos::create_mirror(leftMatrixView);
leftMatrixViewHost(0,0,0) = 1.0; leftMatrixViewHost(0,0,1) = 2.0;
leftMatrixViewHost(0,1,0) = -1.0; leftMatrixViewHost(0,1,1) = 3.0;
Kokkos::deep_copy(leftMatrixView, leftMatrixViewHost);
auto rightMatrixView = getView<Scalar,DeviceType>("right matrix", cellCount, spaceDim, spaceDim);
auto rightMatrixViewHost = Kokkos::create_mirror(rightMatrixView);
rightMatrixViewHost(0,0,0) = 1.0; rightMatrixViewHost(0,0,1) = 2.0;
rightMatrixViewHost(0,1,0) = -1.0; rightMatrixViewHost(0,1,1) = 3.0;
Kokkos::deep_copy(rightMatrixView, rightMatrixViewHost);
auto expectedResultView = getView<Scalar,DeviceType>("result matrix", cellCount, spaceDim, spaceDim);
auto expectedResultViewHost = Kokkos::create_mirror(expectedResultView);
const int cellOrdinal = 0;
for (int i=0; i<spaceDim; i++)
{
for (int j=0; j<spaceDim; j++)
{
Scalar result = 0;
for (int k=0; k<spaceDim; k++)
{
const auto & left = leftMatrixViewHost(cellOrdinal,i,k);
const auto & right = rightMatrixViewHost(cellOrdinal,k,j);
result += left * right;
}
expectedResultViewHost(cellOrdinal,i,j) = result;
}
}
Kokkos::deep_copy(expectedResultView, expectedResultViewHost);
// TODO: add tests for other transpose possibilities
const bool transposeA = false;
const bool transposeB = false;
Data<Scalar,DeviceType> A_data(leftMatrixView);
Data<Scalar,DeviceType> B_data(rightMatrixView);
auto actualResultData = Data<Scalar,DeviceType>::allocateMatMatResult(transposeA, A_data, transposeB, B_data);
TEST_EQUALITY( 3, actualResultData.rank());
TEST_EQUALITY(cellCount, actualResultData.extent_int(0));
TEST_EQUALITY(spaceDim, actualResultData.extent_int(1));
TEST_EQUALITY(spaceDim, actualResultData.extent_int(2));
actualResultData.storeMatMat(transposeA, A_data, transposeB, B_data);
testFloatingEquality3(expectedResultView, actualResultData, relTol, absTol, out, success);
printView(actualResultData.getUnderlyingView3(), out);
}
// #pragma mark Data: MatMatExplicitIdentity_PDD
/** \brief Data provides matrix-matrix multiplication support. This method checks correctness of the computed mat-mat for several cases involving 3x3 identity matrices. Here, the logical dimensions (C,P,D,D) differ from the stored dimensions of (P,D,D). We test each possible transpose combination.
*/
TEUCHOS_UNIT_TEST( Data, MatMatExplicitIdentity_PDD ) // (P,D,D) underlying; notionally (C,P,D,D)
{
// tests that identity * identity = identity
using DeviceType = DefaultTestDeviceType;
double relTol = 1e-13;
double absTol = 1e-13;
using Scalar = double;
const int spaceDim = 3;
const int cellCount = 1;
const int numPoints = 4;
auto identityMatrixView = getFixedRankView<Scalar>("identity matrix", numPoints, spaceDim, spaceDim);
auto identityMatrixViewHost = getHostCopy(identityMatrixView);
for (int pointOrdinal=0; pointOrdinal<numPoints; pointOrdinal++)
{
for (int d1=0; d1<spaceDim; d1++)
{
for (int d2=0; d2<spaceDim; d2++)
{
identityMatrixViewHost(pointOrdinal,d1,d2) = (d1 == d2) ? 1.0 : 0.0;
}
}
}
Kokkos::deep_copy(identityMatrixView, identityMatrixViewHost);
Kokkos::Array<int,4> transformationExtents {cellCount, numPoints, spaceDim, spaceDim};
Kokkos::Array<DataVariationType,4> transformationVariationType {CONSTANT, GENERAL, GENERAL, GENERAL};
Data<Scalar,DeviceType> explicitIdentityMatrix(identityMatrixView, transformationExtents, transformationVariationType);
using std::vector;
using std::pair;
vector<pair<bool,bool>> transposeABChoices {
pair<bool,bool>{false,false},
pair<bool,bool>{false,true},
pair<bool,bool>{true,false},
pair<bool,bool>{true,true}
};
for (const auto &transposeAB : transposeABChoices)
{
const bool transposeA = transposeAB.first;
const bool transposeB = transposeAB.second;
using std::string;
const string transposeAString = transposeA ? "true" : "false";
const string transposeBString = transposeB ? "true" : "false";
out << "*** Testing transposeA = " << transposeAString << ", transposeB = " << transposeBString << " ***\n";
auto actualResultData = Data<Scalar,DeviceType>::allocateMatMatResult(transposeA, explicitIdentityMatrix, transposeB, explicitIdentityMatrix);
TEST_EQUALITY( 4, actualResultData.rank());
TEST_EQUALITY(cellCount, actualResultData.extent_int(0));
TEST_EQUALITY(numPoints, actualResultData.extent_int(1));
TEST_EQUALITY(spaceDim, actualResultData.extent_int(2));
TEST_EQUALITY(spaceDim, actualResultData.extent_int(3));
actualResultData.storeMatMat(transposeA, explicitIdentityMatrix, transposeB, explicitIdentityMatrix);
testFloatingEquality4(explicitIdentityMatrix, actualResultData, relTol, absTol, out, success, "expected", "actual");
printView(actualResultData.getUnderlyingView3(), out);
}
}
// #pragma mark Data: MatMatBlockPlusDiagonal
/** \brief Data provides matrix-matrix multiplication support. This method checks correctness of the computed mat-mat for a case involving one 3x3 matrix that has a 2x2 upper left block, and diagonal entry in the (3,3) position, and one 3x3 matrix that is entirely diagonal. Here, the logical dimensions (C,D,D) match the stored dimensions.
*/
TEUCHOS_UNIT_TEST( Data, MatMatBlockPlusDiagonal )
{
using DeviceType = DefaultTestDeviceType;
double relTol = 1e-13;
double absTol = 1e-13;
using Scalar = double;
const int spaceDim = 3;
const int leftLastNonDiagonal = 1;
const int cellCount = 1;
auto leftMatrixView = getView<Scalar,DeviceType>("left matrix", cellCount, (leftLastNonDiagonal+1) * (leftLastNonDiagonal+1) + (spaceDim - leftLastNonDiagonal - 1));
auto leftMatrixViewHost = Kokkos::create_mirror(leftMatrixView);
int entryIndex = 0;
// Block:
leftMatrixViewHost(0,entryIndex++) = 1.0; leftMatrixViewHost(0,entryIndex++) = 2.0;
leftMatrixViewHost(0,entryIndex++) = -1.0; leftMatrixViewHost(0,entryIndex++) = 3.0;
// Diagonal:
leftMatrixViewHost(0,entryIndex++) = 3.0;
Kokkos::deep_copy(leftMatrixView, leftMatrixViewHost);
const int rightLastNonDiagonal = 0;
auto rightMatrixView = getView<Scalar,DeviceType>("right matrix", cellCount, (rightLastNonDiagonal+1) * (rightLastNonDiagonal+1) + (spaceDim - rightLastNonDiagonal - 1));
auto rightMatrixViewHost = Kokkos::create_mirror(rightMatrixView);
entryIndex = 0;
// Diagonal:
rightMatrixViewHost(0,entryIndex++) = 1.0;
rightMatrixViewHost(0,entryIndex++) = 3.0;
rightMatrixViewHost(0,entryIndex++) = 2.0;
Kokkos::deep_copy(rightMatrixView, rightMatrixViewHost);
// TODO: add tests for other transpose possibilities
const bool transposeA = false;
const bool transposeB = false;
const int rank = 3;
Kokkos::Array<int,7> extents {cellCount,spaceDim,spaceDim,0,0,0,0};
Kokkos::Array<DataVariationType,7> variationTypes {GENERAL,BLOCK_PLUS_DIAGONAL,BLOCK_PLUS_DIAGONAL,CONSTANT,CONSTANT,CONSTANT,CONSTANT};
Data<Scalar,DeviceType> A( leftMatrixView, rank, extents, variationTypes, leftLastNonDiagonal);
Data<Scalar,DeviceType> B(rightMatrixView, rank, extents, variationTypes, rightLastNonDiagonal);
auto expectedResultView = getView<Scalar,DeviceType>("result matrix", cellCount, spaceDim, spaceDim);
const int cellOrdinal = 0;
auto policy = Kokkos::MDRangePolicy<typename DeviceType::execution_space,Kokkos::Rank<2>>({0,0},{spaceDim,spaceDim});
Kokkos::parallel_for("compute first-order simplex Jacobians", policy,
KOKKOS_LAMBDA(const int &i, const int &j)
{
Scalar result = 0;
for (int k=0; k<spaceDim; k++)
{
Scalar left = transposeA ? A(cellOrdinal,k,i) : A(cellOrdinal,i,k);
Scalar right = transposeB ? B(cellOrdinal,j,k) : B(cellOrdinal,k,j);
result += left * right;
}
expectedResultView(cellOrdinal, i, j) = result;
});
auto actualResultData = Data<Scalar,DeviceType>::allocateMatMatResult(transposeA, A, transposeB, B);
TEST_EQUALITY( 3, actualResultData.rank());
TEST_EQUALITY(cellCount, actualResultData.extent_int(0));
TEST_EQUALITY(spaceDim, actualResultData.extent_int(1));
TEST_EQUALITY(spaceDim, actualResultData.extent_int(2));
const int resultLastNonDiagonal = std::max(leftLastNonDiagonal,rightLastNonDiagonal);
TEST_EQUALITY(resultLastNonDiagonal, actualResultData.blockPlusDiagonalLastNonDiagonal());
actualResultData.storeMatMat(transposeA, A, transposeB, B);
testFloatingEquality3(expectedResultView, actualResultData, relTol, absTol, out, success);
printView(actualResultData.getUnderlyingView2(), out);
}
// test statically that Data supports all 7 rank operators
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,1>::value, "Data is expected to support up to rank 7");
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,2>::value, "Data is expected to support up to rank 7");
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,3>::value, "Data is expected to support up to rank 7");
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,4>::value, "Data is expected to support up to rank 7");
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,5>::value, "Data is expected to support up to rank 7");
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,6>::value, "Data is expected to support up to rank 7");
static_assert(supports_rank<Data<double,DefaultTestDeviceType>,7>::value, "Data is expected to support up to rank 7");
} // anonymous namespace
|