1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
// @HEADER
// ************************************************************************
//
// Intrepid2 Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov),
// Mauro Perego (mperego@sandia.gov), or
// Nate Roberts (nvrober@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file SubBasisInclusionTests.cpp
\brief Tests to verify that hierarchical bases are hierarchical -- that is, that lower-order instances are subsets of higher-order instances.
\author Created by N.V. Roberts.
*/
#include "Teuchos_UnitTestHarness.hpp"
#include "Intrepid2_HierarchicalBasisFamily.hpp"
#include "Intrepid2_Types.hpp"
#include "Intrepid2_TestUtils.hpp"
#include "Kokkos_Core.hpp"
namespace
{
using namespace Intrepid2;
bool testSubBasis(shards::CellTopology cellTopo, Intrepid2::EFunctionSpace fs, const double tol, Teuchos::FancyOStream &out, bool &success,
int polyOrder_x, int polyOrder_y=-1, int polyOrder_z = -1, bool defineVertexFunctions = true)
{
using DeviceType = DefaultTestDeviceType;
using OutputScalar = double;
using PointScalar = double;
using namespace Intrepid2;
using Basis = Basis<DeviceType,OutputScalar,PointScalar>;
auto vectorsMatch = [](std::vector<int> lhs,std::vector<int> rhs)
{
if (lhs.size() != rhs.size()) return false;
for (unsigned i=0; i<lhs.size(); i++)
{
if (lhs[i] != rhs[i]) return false;
}
return true;
};
Teuchos::RCP<Basis> basis;
if (defineVertexFunctions)
{
basis = getHierarchicalBasis<true>(cellTopo, fs, polyOrder_x, polyOrder_y, polyOrder_z);
}
else
{
basis = getHierarchicalBasis<false>(cellTopo, fs, polyOrder_x, polyOrder_y, polyOrder_z);
}
int spaceDim = cellTopo.getDimension();
int minDegree = (fs == Intrepid2::FUNCTION_SPACE_HVOL) ? 0 : 1;
bool isLine = cellTopo.getKey() == shards::Line<>::key;
bool isQuad = cellTopo.getKey() == shards::Quadrilateral<>::key;
bool isHex = cellTopo.getKey() == shards::Hexahedron<>::key;
bool isTri = cellTopo.getKey() == shards::Triangle<>::key;
bool isTet = cellTopo.getKey() == shards::Tetrahedron<>::key;
bool isWedge = cellTopo.getKey() == shards::Wedge<>::key;
int polyOrderDim = -1; // the number of dimensions of p-anisotropy allowed
if (isLine || isQuad || isHex)
{
polyOrderDim = spaceDim;
}
else if (isTri || isTet)
{
polyOrderDim = 1;
}
else if (isWedge)
{
polyOrderDim = 2; // line x tri
}
auto subBasisDegreeTestCases = getBasisTestCasesUpToDegree(polyOrderDim, minDegree, polyOrder_x, polyOrder_y, polyOrder_z);
std::vector<int> degrees(polyOrderDim);
degrees[0] = polyOrder_x;
if (polyOrderDim > 1) degrees[1] = polyOrder_y;
if (polyOrderDim > 2) degrees[2] = polyOrder_z;
int numPoints_1D = 5;
auto inputPoints = getInputPointsView<PointScalar,DeviceType>(cellTopo, numPoints_1D);
int numPoints = inputPoints.extent_int(0);
auto op = Intrepid2::OPERATOR_VALUE;
auto outputValues = getOutputView<OutputScalar,DeviceType>(fs, op, basis->getCardinality(), numPoints, spaceDim);
basis->getValues(outputValues, inputPoints, op);
out << "Testing sub-basis inclusion in degree ";
for (int i=0; i<polyOrderDim; i++)
{
out << degrees[i];
if (i<polyOrderDim-1) out << " x ";
}
out << " basis " << basis->getName() << std::endl;
for (auto testCase : subBasisDegreeTestCases)
{
out << "testing sub-basis of degree ";
for (int i=0; i<polyOrderDim; i++)
{
out << testCase[i];
if (i<polyOrderDim-1) out << " x ";
}
out << std::endl;
// pad test case with -1s to get to 3D (so we can make one call to getBasis below)
auto paddedTestCase = testCase;
for (int d=testCase.size(); d<3; d++)
{
paddedTestCase.push_back(-1);
}
Teuchos::RCP<Basis> subBasis;
if (defineVertexFunctions)
{
subBasis = getHierarchicalBasis<true>(cellTopo, fs, paddedTestCase[0], paddedTestCase[1], paddedTestCase[2]);
}
else
{
subBasis = getHierarchicalBasis<false>(cellTopo, fs, paddedTestCase[0], paddedTestCase[1], paddedTestCase[2]);
}
auto allLowerOrderFieldOrdinals = basis->getFieldOrdinalsForDegree(testCase);
// for H(curl) and H(div), allLowerOrderFieldOrdinals may have some extra entries beyond what the subBasis has
// (this has to do with the fact that the different families have different degrees in each dimension)
// we filter according to polynomial degree of the fields, and place the result in lowerOrderFieldOrdinals
std::vector<int> lowerOrderFieldOrdinals;
if ((fs == Intrepid2::FUNCTION_SPACE_HCURL) || (fs == Intrepid2::FUNCTION_SPACE_HDIV))
{
unsigned allFieldOrdinalIndex = 0;
for (int subBasisFieldOrdinal=0; subBasisFieldOrdinal < subBasis->getCardinality(); subBasisFieldOrdinal++)
{
while ( (allFieldOrdinalIndex<allLowerOrderFieldOrdinals.size())
&& (
!vectorsMatch(
basis ->getPolynomialDegreeOfFieldAsVector(allLowerOrderFieldOrdinals[allFieldOrdinalIndex]),
subBasis->getPolynomialDegreeOfFieldAsVector(subBasisFieldOrdinal) // same poly order in each dimension
)
)
)
{
allFieldOrdinalIndex++;
}
if (allFieldOrdinalIndex < allLowerOrderFieldOrdinals.size())
{
// then the subcell dim and subcell ordinal must match -- add this into our filtered list
lowerOrderFieldOrdinals.push_back(allLowerOrderFieldOrdinals[allFieldOrdinalIndex]);
}
// if all has gone well, we've established a correspondence between subBasisFieldOrdinal and allLowerOrderFieldOrdinals[allFieldOrdinalIndex]
// we therefore should increment allFieldOrdinalIndex
allFieldOrdinalIndex++;
}
}
else
{
lowerOrderFieldOrdinals = allLowerOrderFieldOrdinals;
}
if (lowerOrderFieldOrdinals.size() != unsigned(subBasis->getCardinality()))
{
success = false;
out << "FAILURE: for test case {";
for (unsigned d=0; d<testCase.size(); d++)
{
out << testCase[d];
if (d<testCase.size()-1) out << ",";
}
out << "}, expected fieldOrdinals for degree to have " << subBasis->getCardinality() << " entries, but had " << lowerOrderFieldOrdinals.size() << std::endl;
out.flush();
continue; // next test case
}
auto subBasisOutputValues = getOutputView<OutputScalar,DeviceType>(fs, op, subBasis->getCardinality(), numPoints, spaceDim);
subBasis->getValues(subBasisOutputValues, inputPoints, op);
Kokkos::fence();
bool vectorValued = (outputValues.rank() == 3); // F,P,D -- if scalar-valued, F,P
auto inputPointsHost = getHostCopy(inputPoints);
auto outputValuesHost = getHostCopy(outputValues);
auto subBasisOutputValuesHost = getHostCopy(subBasisOutputValues);
for (int pointOrdinal=0; pointOrdinal<numPoints; pointOrdinal++)
{
// by construction, the sub-basis should have fields in the same order as the original basis
// (the original basis just has extra fields interspersed)
int subBasisFieldOrdinal = 0;
for (int fieldOrdinal : lowerOrderFieldOrdinals)
{
if (!vectorValued)
{
double originalValue = outputValuesHost(fieldOrdinal,pointOrdinal);
double subBasisValue = subBasisOutputValuesHost(subBasisFieldOrdinal,pointOrdinal);
bool valuesMatch = essentiallyEqual(originalValue, subBasisValue, tol);
if (!valuesMatch)
{
if (fs == Intrepid2::FUNCTION_SPACE_HCURL)
{
// scalar values are the curls
out << "curl ";
}
else if (fs == Intrepid2::FUNCTION_SPACE_HDIV)
{
// scalar values are the div values
out << "div ";
}
double x = inputPointsHost(pointOrdinal,0);
double y = (spaceDim > 1) ? inputPointsHost(pointOrdinal,1) : -2.0;
double z = (spaceDim > 2) ? inputPointsHost(pointOrdinal,2) : -2.0;
if (spaceDim == 1)
out << "values for " << x << " differ for field ordinal " << fieldOrdinal;
else if (spaceDim == 2)
out << "values for (" << x << "," << y << ") differ for field ordinal " << fieldOrdinal;
else
out << "values for (" << x << "," << y << "," << z << ") differ for field ordinal " << fieldOrdinal;
out << ": expected " << subBasisValue << "; actual " << originalValue;
out << " (diff: " << subBasisValue-originalValue << ")" << std::endl;
success = false;
}
}
else // vector-valued
{
bool valuesMatch = true;
for (int d=0; d<spaceDim; d++)
{
double originalValue = outputValuesHost(fieldOrdinal,pointOrdinal,d);
double subBasisValue = subBasisOutputValuesHost(subBasisFieldOrdinal,pointOrdinal,d);
if (!essentiallyEqual(originalValue, subBasisValue, tol))
{
valuesMatch = false;
}
}
if (!valuesMatch)
{
double x = inputPointsHost(pointOrdinal,0);
double y = (spaceDim > 1) ? inputPointsHost(pointOrdinal,1) : -2.0;
double z = (spaceDim > 2) ? inputPointsHost(pointOrdinal,2) : -2.0;
if (spaceDim == 1)
out << "values for " << x << " differ for field ordinal " << fieldOrdinal;
else if (spaceDim == 2)
out << "values for (" << x << "," << y << ") differ for field ordinal " << fieldOrdinal;
else
out << "values for (" << x << "," << y << "," << z << ") differ for field ordinal " << fieldOrdinal;
out << ": expected value (lower-order basis fieldOrdinal " << subBasisFieldOrdinal << "): (";
for (int d=0; d<spaceDim; d++)
{
out << subBasisOutputValuesHost(subBasisFieldOrdinal,pointOrdinal,d);
if (d<spaceDim-1) out << ",";
}
out << "); actual (larger basis fieldOrdinal " << fieldOrdinal << ") was (";
for (int d=0; d<spaceDim; d++)
{
out << outputValuesHost(fieldOrdinal,pointOrdinal,d);
if (d<spaceDim-1) out << ",";
}
out << ")" << std::endl;
success = false;
}
}
subBasisFieldOrdinal++;
}
}
}
return success;
}
void runSubBasisTests(shards::CellTopology &cellTopo, Teuchos::FancyOStream &out, bool &success)
{
const double tol = TEST_TOLERANCE_TIGHT;
const int maxDegree = 4;
std::vector<Intrepid2::EFunctionSpace> functionSpaces_1D = {FUNCTION_SPACE_HGRAD,FUNCTION_SPACE_HVOL};
std::vector<Intrepid2::EFunctionSpace> functionSpaces_2D = {FUNCTION_SPACE_HGRAD,FUNCTION_SPACE_HCURL,FUNCTION_SPACE_HDIV,FUNCTION_SPACE_HVOL};
std::vector<Intrepid2::EFunctionSpace> functionSpaces_3D = {FUNCTION_SPACE_HGRAD,FUNCTION_SPACE_HCURL,FUNCTION_SPACE_HDIV,FUNCTION_SPACE_HVOL};
std::vector<std::vector<Intrepid2::EFunctionSpace> > functionSpacesForDimension = {functionSpaces_1D,functionSpaces_2D,functionSpaces_3D};
const int spaceDim = cellTopo.getDimension();
auto functionSpaces = functionSpacesForDimension[spaceDim-1];
for (auto fs : functionSpaces)
{
std::vector<bool> continuousBasisValues;
if (fs != FUNCTION_SPACE_HVOL)
{
continuousBasisValues = {true,false};
}
else
{
continuousBasisValues = {true}; // false case not supported by the dof tag stuff that testSubBasis() does
}
for (auto continuousBasis : continuousBasisValues) // corresponds to "defineVertexFunctions" in line basis definitions
{
for (int degree=1; degree<=maxDegree; degree++)
{
testSubBasis(cellTopo, fs, tol, out, success, degree,degree,degree,continuousBasis);
}
}
}
}
TEUCHOS_UNIT_TEST( SubBasisInclusion, Line )
{
shards::CellTopology lineTopo = shards::CellTopology(shards::getCellTopologyData<shards::Line<> >() );
runSubBasisTests(lineTopo, out, success);
}
TEUCHOS_UNIT_TEST( SubBasisInclusion, Quadrilateral )
{
shards::CellTopology quadTopo = shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<> >() );
runSubBasisTests(quadTopo, out, success);
}
TEUCHOS_UNIT_TEST( SubBasisInclusion, Hexahedron )
{
shards::CellTopology hexTopo = shards::CellTopology(shards::getCellTopologyData<shards::Hexahedron<> >() );
runSubBasisTests(hexTopo, out, success);
}
TEUCHOS_UNIT_TEST( SubBasisInclusion, Tetrahedron )
{
shards::CellTopology tetTopo = shards::CellTopology(shards::getCellTopologyData<shards::Tetrahedron<> >() );
// so far, only HGRAD implemented for hierarchical tetrahedron. Once we have full exact sequence, we can
// switch to calling runSubBasisTests(tetTopo, out, success).
std::vector<Intrepid2::EFunctionSpace> functionSpaces = {FUNCTION_SPACE_HGRAD};
auto cellTopo = tetTopo;
const int maxDegree = 5;
const double tol = TEST_TOLERANCE_TIGHT;
for (auto fs : functionSpaces)
{
std::vector<bool> continuousBasisValues;
if (fs != FUNCTION_SPACE_HVOL)
{
continuousBasisValues = {true,false};
}
else
{
continuousBasisValues = {true}; // false case not supported by the dof tag stuff that testSubBasis() does
}
for (auto continuousBasis : continuousBasisValues) // corresponds to "defineVertexFunctions" in basis definitions
{
for (int degree=1; degree<=maxDegree; degree++)
{
testSubBasis(cellTopo, fs, tol, out, success, degree, -1, -1,continuousBasis);
}
}
}
}
TEUCHOS_UNIT_TEST( SubBasisInclusion, Triangle )
{
shards::CellTopology triTopo = shards::CellTopology(shards::getCellTopologyData<shards::Triangle<> >() );
// so far, only HGRAD implemented for hierarchical triangle. Once we have full exact sequence, we can
// switch to calling runSubBasisTests(triTopo, out, success).
std::vector<Intrepid2::EFunctionSpace> functionSpaces = {FUNCTION_SPACE_HGRAD};
auto cellTopo = triTopo;
const int maxDegree = 5;
const double tol = TEST_TOLERANCE_TIGHT;
for (auto fs : functionSpaces)
{
std::vector<bool> continuousBasisValues;
if (fs != FUNCTION_SPACE_HVOL)
{
continuousBasisValues = {true,false};
}
else
{
continuousBasisValues = {true}; // false case not supported by the dof tag stuff that testSubBasis() does
}
for (auto continuousBasis : continuousBasisValues) // corresponds to "defineVertexFunctions" in line basis definitions
{
for (int degree=1; degree<=maxDegree; degree++)
{
testSubBasis(cellTopo, fs, tol, out, success, degree, -1, -1,continuousBasis);
}
}
}
}
} // namespace
|