File: TransformedVectorDataTests.cpp

package info (click to toggle)
trilinos 13.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 837,948 kB
  • sloc: cpp: 3,466,824; ansic: 433,701; fortran: 168,838; python: 102,712; xml: 66,353; sh: 38,380; makefile: 25,246; perl: 7,516; f90: 6,358; csh: 4,161; objc: 2,620; lex: 1,484; lisp: 810; javascript: 552; yacc: 515; awk: 364; ml: 281; php: 145
file content (249 lines) | stat: -rw-r--r-- 10,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// @HEADER
// ************************************************************************
//
//                           Intrepid2 Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim  (kyukim@sandia.gov), or
//                    Mauro Perego  (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER


/** \file   TransformedVectorDataTests.cpp
    \brief  Tests against TransformedVectorData.
    \author Created by Nate Roberts
*/

#include "Kokkos_Core.hpp"

#include <Teuchos_FancyOStream.hpp>
#include <Teuchos_GlobalMPISession.hpp>
#include <Teuchos_TimeMonitor.hpp>
#include <Teuchos_UnitTestRepository.hpp>

#include <Intrepid2_DefaultCubatureFactory.hpp>

#include <Intrepid2_Kernels.hpp>
#include <Intrepid2_NodalBasisFamily.hpp>
#include <Intrepid2_TestUtils.hpp>

#include "Intrepid2_CellGeometry.hpp"
#include "Intrepid2_CellGeometryTestUtils.hpp"
#include "Intrepid2_Data.hpp"
#include "Intrepid2_FunctionSpaceTools.hpp"
#include "Intrepid2_TensorData.hpp"
#include "Intrepid2_TensorPoints.hpp"
#include "Intrepid2_TransformedVectorData.hpp"
#include "Intrepid2_VectorData.hpp"

#include "Intrepid2_ScalarView.hpp"

namespace
{
  using namespace Intrepid2;

  template<int spaceDim>
  void testVectorTransformation(const int &polyOrder, const int &meshWidth, Teuchos::FancyOStream &out, bool &success)
  {
    using DeviceType = DefaultTestDeviceType;
    using Scalar = double;
    using PointScalar = double;
    
    const double relTol = 1e-12;
    const double absTol = 1e-12;
    
    auto fs = Intrepid2::FUNCTION_SPACE_HGRAD;
    
    auto lineBasis = Intrepid2::getLineBasis< Intrepid2::NodalBasisFamily<DeviceType> >(fs, polyOrder);
    
    int numFields_1D = lineBasis->getCardinality();
    
    int numFields = 1;
    int numHypercubes = 1;
    for (int d=0; d<spaceDim; d++)
    {
      numHypercubes *= meshWidth;
      numFields     *= numFields_1D;
    }
    int numCells = numHypercubes;
      
    shards::CellTopology lineTopo = shards::getCellTopologyData< shards::Line<> >();
    shards::CellTopology cellTopo;
    if      (spaceDim == 1) cellTopo = shards::getCellTopologyData< shards::Line<>          >();
    else if (spaceDim == 2) cellTopo = shards::getCellTopologyData< shards::Quadrilateral<> >();
    else if (spaceDim == 3) cellTopo = shards::getCellTopologyData< shards::Hexahedron<>    >();
    
    auto lineCubature = Intrepid2::DefaultCubatureFactory::create<DeviceType>(lineTopo,polyOrder*2);
    int numPoints_1D = lineCubature->getNumPoints();
    ScalarView<PointScalar,DeviceType> lineCubaturePoints("line cubature points",numPoints_1D,1);
    ScalarView<double,DeviceType> lineCubatureWeights("line cubature weights", numPoints_1D);
    
    lineCubature->getCubature(lineCubaturePoints, lineCubatureWeights);
    
    // Allocate some intermediate containers
    ScalarView<Scalar,DeviceType> lineBasisValues    ("line basis values",      numFields_1D, numPoints_1D   );
    ScalarView<Scalar,DeviceType> lineBasisGradValues("line basis grad values", numFields_1D, numPoints_1D, 1);
    
    // for now, we use 1D values to build up the 2D or 3D gradients
    // eventually, TensorBasis should offer a getValues() variant that returns tensor basis data
    lineBasis->getValues(lineBasisValues,     lineCubaturePoints, Intrepid2::OPERATOR_VALUE );
    lineBasis->getValues(lineBasisGradValues, lineCubaturePoints, Intrepid2::OPERATOR_GRAD  );
    
    // drop the trivial space dimension in line gradient values:
    Kokkos::resize(lineBasisGradValues, numFields_1D, numPoints_1D);
      
    Kokkos::Array<TensorData<Scalar,DeviceType>, spaceDim> vectorComponents;
    
    for (int d=0; d<spaceDim; d++)
    {
      Kokkos::Array<Data<Scalar,DeviceType>, spaceDim> gradComponent_d;
      for (int d2=0; d2<spaceDim; d2++)
      {
        if (d2 == d) gradComponent_d[d2] = Data<Scalar,DeviceType>(lineBasisGradValues);
        else         gradComponent_d[d2] = Data<Scalar,DeviceType>(lineBasisValues);
      }
      vectorComponents[d] = TensorData<Scalar,DeviceType>(gradComponent_d);
    }
    VectorData<Scalar,DeviceType> gradientValues(vectorComponents, false); // false: not axis-aligned
    
    CellGeometry<PointScalar,spaceDim,DeviceType> cellNodes = uniformCartesianMesh<PointScalar,spaceDim,DeviceType>(1.0, meshWidth);
    
    // goal here is to do a weighted Poisson; i.e. (f grad u, grad v) on each cell
    
    int pointsPerCell = 1;
    for (int d=0; d<spaceDim; d++)
    {
      pointsPerCell *= numPoints_1D;
    }
    
    auto jacobian = cellNodes.allocateJacobianData(pointsPerCell);
    auto jacobianDet = CellTools<DeviceType>::allocateJacobianDet(jacobian);
    auto jacobianInv = CellTools<DeviceType>::allocateJacobianInv(jacobian);
    cellNodes.setJacobian(                   jacobian, pointsPerCell);
    CellTools<DeviceType>::setJacobianDet(jacobianDet, jacobian);
    CellTools<DeviceType>::setJacobianInv(jacobianInv, jacobian);
    
    // lazily-evaluated transformed gradient values:
    auto transformedGradientData = FunctionSpaceTools<DeviceType>::getHGRADtransformGRAD(jacobianInv, gradientValues);

    int numPoints = 1;
    for (int d=0; d<spaceDim; d++)
    {
      numPoints *= numPoints_1D;
    }
    
    // now, compute transformed values in the classic, expanded way
    ScalarView<Scalar,DeviceType> expandedTransformedGradValues("transformed grad values", numCells, numFields, numPoints, spaceDim);
    
    auto basis = Intrepid2::getBasis< Intrepid2::NodalBasisFamily<DeviceType> >(cellTopo, fs, polyOrder);
    
    // Allocate some intermediate containers
    ScalarView<Scalar,DeviceType> basisValues    ("basis values", numFields, numPoints );
    ScalarView<Scalar,DeviceType> basisGradValues("basis grad values", numFields, numPoints, spaceDim);

    ScalarView<Scalar,DeviceType> transformedGradValues("transformed grad values", numCells, numFields, numPoints, spaceDim);
    ScalarView<Scalar,DeviceType> transformedWeightedGradValues("transformed weighted grad values", numCells, numFields, numPoints, spaceDim);
    
    auto cubature = Intrepid2::DefaultCubatureFactory::create<DeviceType>(cellTopo,polyOrder*2);
    TEST_EQUALITY( numPoints, cubature->getNumPoints());
    ScalarView<PointScalar,DeviceType> cubaturePoints("cubature points",numPoints,spaceDim);
    ScalarView<double,DeviceType> cubatureWeights("cubature weights", numPoints);
    
    cubature->getCubature(cubaturePoints, cubatureWeights);
    
    basis->getValues(basisValues,     cubaturePoints, Intrepid2::OPERATOR_VALUE );
    basis->getValues(basisGradValues, cubaturePoints, Intrepid2::OPERATOR_GRAD  );
    
    const int numNodesPerCell = cellNodes.numNodesPerCell();
    ScalarView<PointScalar,DeviceType> expandedCellNodes("expanded cell nodes",numCells,numNodesPerCell,spaceDim);
    
    using ExecutionSpace = typename DeviceType::execution_space;
    auto policy = Kokkos::MDRangePolicy<ExecutionSpace,Kokkos::Rank<2>>({0,0},{numCells,numNodesPerCell});
    Kokkos::parallel_for("fill expanded cell nodes", policy,
    KOKKOS_LAMBDA (const int &cellOrdinal, const int &nodeOrdinal)
    {
      for (int d=0; d<spaceDim; d++)
      {
        expandedCellNodes(cellOrdinal,nodeOrdinal,d) = cellNodes(cellOrdinal,nodeOrdinal,d);
      }
    });
    
    ScalarView<Scalar,DeviceType> expandedJacobian("jacobian", numCells, numPoints, spaceDim, spaceDim);
    ScalarView<Scalar,DeviceType> expandedJacobianInverse("jacobian inverse", numCells, numPoints, spaceDim, spaceDim);
    
    using CellTools = Intrepid2::CellTools<DeviceType>;
    using ExecutionSpace = typename DeviceType::execution_space;
    using FunctionSpaceTools = Intrepid2::FunctionSpaceTools<ExecutionSpace>; // TODO: once FunctionSpaceTools supports DeviceType, change the template argument here.
    
    CellTools::setJacobian(expandedJacobian, cubaturePoints, expandedCellNodes, cellTopo);
    CellTools::setJacobianInv(expandedJacobianInverse, expandedJacobian);
    
    FunctionSpaceTools::HGRADtransformGRAD(transformedGradValues, expandedJacobianInverse, basisGradValues);
    
    testFloatingEquality4(transformedGradValues, transformedGradientData, relTol, absTol, out, success);
  }

  TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_1D_p1 )
  {
    const int spaceDim = 1;
    const int polyOrder = 1;
    const int meshWidth = 10;
    testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
  }
   
 TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_1D_p2 )
 {
   const int spaceDim = 1;
   const int polyOrder = 2;
   const int meshWidth = 10;
   testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
 }
  
 TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_2D_p1 )
 {
   const int spaceDim = 2;
   const int polyOrder = 1;
   const int meshWidth = 3;
   testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
 }
  
 TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_2D_p2 )
 {
   const int spaceDim = 2;
   const int polyOrder = 2;
   const int meshWidth = 3;
   testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
 }
} // anonymous namespace