1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// @HEADER
// ************************************************************************
//
// Intrepid2 Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
// Mauro Perego (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file TransformedVectorDataTests.cpp
\brief Tests against TransformedVectorData.
\author Created by Nate Roberts
*/
#include "Kokkos_Core.hpp"
#include <Teuchos_FancyOStream.hpp>
#include <Teuchos_GlobalMPISession.hpp>
#include <Teuchos_TimeMonitor.hpp>
#include <Teuchos_UnitTestRepository.hpp>
#include <Intrepid2_DefaultCubatureFactory.hpp>
#include <Intrepid2_Kernels.hpp>
#include <Intrepid2_NodalBasisFamily.hpp>
#include <Intrepid2_TestUtils.hpp>
#include "Intrepid2_CellGeometry.hpp"
#include "Intrepid2_CellGeometryTestUtils.hpp"
#include "Intrepid2_Data.hpp"
#include "Intrepid2_FunctionSpaceTools.hpp"
#include "Intrepid2_TensorData.hpp"
#include "Intrepid2_TensorPoints.hpp"
#include "Intrepid2_TransformedVectorData.hpp"
#include "Intrepid2_VectorData.hpp"
#include "Intrepid2_ScalarView.hpp"
namespace
{
using namespace Intrepid2;
template<int spaceDim>
void testVectorTransformation(const int &polyOrder, const int &meshWidth, Teuchos::FancyOStream &out, bool &success)
{
using DeviceType = DefaultTestDeviceType;
using Scalar = double;
using PointScalar = double;
const double relTol = 1e-12;
const double absTol = 1e-12;
auto fs = Intrepid2::FUNCTION_SPACE_HGRAD;
auto lineBasis = Intrepid2::getLineBasis< Intrepid2::NodalBasisFamily<DeviceType> >(fs, polyOrder);
int numFields_1D = lineBasis->getCardinality();
int numFields = 1;
int numHypercubes = 1;
for (int d=0; d<spaceDim; d++)
{
numHypercubes *= meshWidth;
numFields *= numFields_1D;
}
int numCells = numHypercubes;
shards::CellTopology lineTopo = shards::getCellTopologyData< shards::Line<> >();
shards::CellTopology cellTopo;
if (spaceDim == 1) cellTopo = shards::getCellTopologyData< shards::Line<> >();
else if (spaceDim == 2) cellTopo = shards::getCellTopologyData< shards::Quadrilateral<> >();
else if (spaceDim == 3) cellTopo = shards::getCellTopologyData< shards::Hexahedron<> >();
auto lineCubature = Intrepid2::DefaultCubatureFactory::create<DeviceType>(lineTopo,polyOrder*2);
int numPoints_1D = lineCubature->getNumPoints();
ScalarView<PointScalar,DeviceType> lineCubaturePoints("line cubature points",numPoints_1D,1);
ScalarView<double,DeviceType> lineCubatureWeights("line cubature weights", numPoints_1D);
lineCubature->getCubature(lineCubaturePoints, lineCubatureWeights);
// Allocate some intermediate containers
ScalarView<Scalar,DeviceType> lineBasisValues ("line basis values", numFields_1D, numPoints_1D );
ScalarView<Scalar,DeviceType> lineBasisGradValues("line basis grad values", numFields_1D, numPoints_1D, 1);
// for now, we use 1D values to build up the 2D or 3D gradients
// eventually, TensorBasis should offer a getValues() variant that returns tensor basis data
lineBasis->getValues(lineBasisValues, lineCubaturePoints, Intrepid2::OPERATOR_VALUE );
lineBasis->getValues(lineBasisGradValues, lineCubaturePoints, Intrepid2::OPERATOR_GRAD );
// drop the trivial space dimension in line gradient values:
Kokkos::resize(lineBasisGradValues, numFields_1D, numPoints_1D);
Kokkos::Array<TensorData<Scalar,DeviceType>, spaceDim> vectorComponents;
for (int d=0; d<spaceDim; d++)
{
Kokkos::Array<Data<Scalar,DeviceType>, spaceDim> gradComponent_d;
for (int d2=0; d2<spaceDim; d2++)
{
if (d2 == d) gradComponent_d[d2] = Data<Scalar,DeviceType>(lineBasisGradValues);
else gradComponent_d[d2] = Data<Scalar,DeviceType>(lineBasisValues);
}
vectorComponents[d] = TensorData<Scalar,DeviceType>(gradComponent_d);
}
VectorData<Scalar,DeviceType> gradientValues(vectorComponents, false); // false: not axis-aligned
CellGeometry<PointScalar,spaceDim,DeviceType> cellNodes = uniformCartesianMesh<PointScalar,spaceDim,DeviceType>(1.0, meshWidth);
// goal here is to do a weighted Poisson; i.e. (f grad u, grad v) on each cell
int pointsPerCell = 1;
for (int d=0; d<spaceDim; d++)
{
pointsPerCell *= numPoints_1D;
}
auto jacobian = cellNodes.allocateJacobianData(pointsPerCell);
auto jacobianDet = CellTools<DeviceType>::allocateJacobianDet(jacobian);
auto jacobianInv = CellTools<DeviceType>::allocateJacobianInv(jacobian);
cellNodes.setJacobian( jacobian, pointsPerCell);
CellTools<DeviceType>::setJacobianDet(jacobianDet, jacobian);
CellTools<DeviceType>::setJacobianInv(jacobianInv, jacobian);
// lazily-evaluated transformed gradient values:
auto transformedGradientData = FunctionSpaceTools<DeviceType>::getHGRADtransformGRAD(jacobianInv, gradientValues);
int numPoints = 1;
for (int d=0; d<spaceDim; d++)
{
numPoints *= numPoints_1D;
}
// now, compute transformed values in the classic, expanded way
ScalarView<Scalar,DeviceType> expandedTransformedGradValues("transformed grad values", numCells, numFields, numPoints, spaceDim);
auto basis = Intrepid2::getBasis< Intrepid2::NodalBasisFamily<DeviceType> >(cellTopo, fs, polyOrder);
// Allocate some intermediate containers
ScalarView<Scalar,DeviceType> basisValues ("basis values", numFields, numPoints );
ScalarView<Scalar,DeviceType> basisGradValues("basis grad values", numFields, numPoints, spaceDim);
ScalarView<Scalar,DeviceType> transformedGradValues("transformed grad values", numCells, numFields, numPoints, spaceDim);
ScalarView<Scalar,DeviceType> transformedWeightedGradValues("transformed weighted grad values", numCells, numFields, numPoints, spaceDim);
auto cubature = Intrepid2::DefaultCubatureFactory::create<DeviceType>(cellTopo,polyOrder*2);
TEST_EQUALITY( numPoints, cubature->getNumPoints());
ScalarView<PointScalar,DeviceType> cubaturePoints("cubature points",numPoints,spaceDim);
ScalarView<double,DeviceType> cubatureWeights("cubature weights", numPoints);
cubature->getCubature(cubaturePoints, cubatureWeights);
basis->getValues(basisValues, cubaturePoints, Intrepid2::OPERATOR_VALUE );
basis->getValues(basisGradValues, cubaturePoints, Intrepid2::OPERATOR_GRAD );
const int numNodesPerCell = cellNodes.numNodesPerCell();
ScalarView<PointScalar,DeviceType> expandedCellNodes("expanded cell nodes",numCells,numNodesPerCell,spaceDim);
using ExecutionSpace = typename DeviceType::execution_space;
auto policy = Kokkos::MDRangePolicy<ExecutionSpace,Kokkos::Rank<2>>({0,0},{numCells,numNodesPerCell});
Kokkos::parallel_for("fill expanded cell nodes", policy,
KOKKOS_LAMBDA (const int &cellOrdinal, const int &nodeOrdinal)
{
for (int d=0; d<spaceDim; d++)
{
expandedCellNodes(cellOrdinal,nodeOrdinal,d) = cellNodes(cellOrdinal,nodeOrdinal,d);
}
});
ScalarView<Scalar,DeviceType> expandedJacobian("jacobian", numCells, numPoints, spaceDim, spaceDim);
ScalarView<Scalar,DeviceType> expandedJacobianInverse("jacobian inverse", numCells, numPoints, spaceDim, spaceDim);
using CellTools = Intrepid2::CellTools<DeviceType>;
using ExecutionSpace = typename DeviceType::execution_space;
using FunctionSpaceTools = Intrepid2::FunctionSpaceTools<ExecutionSpace>; // TODO: once FunctionSpaceTools supports DeviceType, change the template argument here.
CellTools::setJacobian(expandedJacobian, cubaturePoints, expandedCellNodes, cellTopo);
CellTools::setJacobianInv(expandedJacobianInverse, expandedJacobian);
FunctionSpaceTools::HGRADtransformGRAD(transformedGradValues, expandedJacobianInverse, basisGradValues);
testFloatingEquality4(transformedGradValues, transformedGradientData, relTol, absTol, out, success);
}
TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_1D_p1 )
{
const int spaceDim = 1;
const int polyOrder = 1;
const int meshWidth = 10;
testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
}
TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_1D_p2 )
{
const int spaceDim = 1;
const int polyOrder = 2;
const int meshWidth = 10;
testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
}
TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_2D_p1 )
{
const int spaceDim = 2;
const int polyOrder = 1;
const int meshWidth = 3;
testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
}
TEUCHOS_UNIT_TEST( TransformedVectorData, TransformedVector_2D_p2 )
{
const int spaceDim = 2;
const int polyOrder = 2;
const int meshWidth = 3;
testVectorTransformation<spaceDim>(polyOrder, meshWidth, out, success);
}
} // anonymous namespace
|