File: test_orientation_HEX_newBasis.hpp

package info (click to toggle)
trilinos 13.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 837,948 kB
  • sloc: cpp: 3,466,824; ansic: 433,701; fortran: 168,838; python: 102,712; xml: 66,353; sh: 38,380; makefile: 25,246; perl: 7,516; f90: 6,358; csh: 4,161; objc: 2,620; lex: 1,484; lisp: 810; javascript: 552; yacc: 515; awk: 364; ml: 281; php: 145
file content (761 lines) | stat: -rw-r--r-- 33,332 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
// @HEADER
// ************************************************************************
//
//                           Intrepid2 Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim  (kyukim@sandia.gov), or
//                    Mauro Perego  (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER


/** \file test_orientation_HEX_newBasis.hpp
    \brief  Test for checking orientation tools for the Nodal and Hierarchical Derived basis on Hexahedra

    The test considers two hexahedra in the physical space sharing a common face. 
    In order to test significant configurations, we consider 6 mappings of the reference hexahedron
    to the first (physical) hexahedron, so that the common face is mapped from all the 6 faces
    of the reference hexahedron.
    Then, for each of the mappings, the global ids of the vertices of the common face are permuted.
    This gives a total of 144 combinations

    The test considers HGRAD, HCURL and HDIV Lagrangian and Hierarchical basis functions, and for each of them:
    1. Computes the oriented basis.
    2. computes the basis coefficients, separately for each hexa, for functions belonging to the H-space spanned by the basis.
    3. checks that the dofs shared between the two hexas are equivalent (this ensures that the orientation works correctly)
    4. checks that the functions are indeed exactly reproduced

    \author Created by Mauro Perego
 */

#include "Intrepid2_config.h"

#ifdef HAVE_INTREPID2_DEBUG
#define INTREPID2_TEST_FOR_DEBUG_ABORT_OVERRIDE_TO_CONTINUE
#endif

#include "Intrepid2_Orientation.hpp"
#include "Intrepid2_OrientationTools.hpp"
#include "Intrepid2_PointTools.hpp"
#include "Intrepid2_CellTools.hpp"
#include "Intrepid2_FunctionSpaceTools.hpp"

#include "Intrepid2_HierarchicalBasisFamily.hpp"
#include "Intrepid2_NodalBasisFamily.hpp"

#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include <array>
#include <set>
#include <random>
#include <algorithm>

namespace Intrepid2 {

namespace Test {

#define INTREPID2_TEST_ERROR_EXPECTED( S )              \
    try {                                                               \
      ++nthrow;                                                         \
      S ;                                                               \
    }                                                                   \
    catch (std::exception &err) {                                        \
      ++ncatch;                                                         \
      *outStream << "Expected Error ----------------------------------------------------------------\n"; \
      *outStream << err.what() << '\n';                                 \
      *outStream << "-------------------------------------------------------------------------------" << "\n\n"; \
    }

template<typename ValueType, typename DeviceSpaceType>
int OrientationHexNewBasis(const bool verbose) {

  typedef Kokkos::DynRankView<ValueType,DeviceSpaceType> DynRankView;
  typedef Kokkos::DynRankView<ordinal_type,DeviceSpaceType> DynRankViewInt;
#define ConstructWithLabel(obj, ...) obj(#obj, __VA_ARGS__)

  static Teuchos::RCP<std::ostream> outStream;
  Teuchos::oblackholestream bhs; // outputs nothing

  if (verbose)
    outStream = Teuchos::rcp(&std::cout, false);
  else
    outStream = Teuchos::rcp(&bhs,       false);

  Teuchos::oblackholestream oldFormatState;
  oldFormatState.copyfmt(std::cout);

  typedef typename
      Kokkos::Impl::is_space<DeviceSpaceType>::host_mirror_space::execution_space HostSpaceType ;

  *outStream << "DeviceSpace::  "; DeviceSpaceType::print_configuration(*outStream, false);
  *outStream << "HostSpace::    ";   HostSpaceType::print_configuration(*outStream, false);
  *outStream << "\n";

  int errorFlag = 0;
  const ValueType tol = tolerence();

  struct Fun {
    ValueType
    KOKKOS_INLINE_FUNCTION
    operator()(const ValueType& x, const ValueType& y, const ValueType& z) {
      return (x+1)*(y-2);//*(z+3)*(x + 2*y +5*z+ 1.0/3.0);
    }
  };

  struct FunDiv {
    ValueType
    KOKKOS_INLINE_FUNCTION
    operator()(const ValueType& x, const ValueType& y, const ValueType& z, const int comp=0) {
      ValueType a = 2*x*y+x*x;
      ValueType f0 = 5+y+x*x+z*z;
      ValueType f1 = -7-2*z+x+y*y+z*z;
      ValueType f2 = 0.5+z*z+x*x;
      //fun = f + a x
      switch (comp) {
      case 0:
        return f0 + a*x;
      case 1:
        return f1 + a*y;
      case 2:
        return f2 + a*z;
      default:
        return 0;
      }
    }
  };

  struct FunCurl {
    ValueType
    KOKKOS_INLINE_FUNCTION
    operator()(const ValueType& x, const ValueType& y, const ValueType& z, const int comp=0) {
      ValueType a0 = y-7+z*z;
      ValueType a1 = 2*z-1+z*x;
      ValueType a2 = z-2+x*x;
      ValueType f0 = 2+x+z+x*y;
      ValueType f1 = 3-3*z;
      ValueType f2 = -5+x;
      //fun = f + a \times x
      switch (comp) {
      case 0:
        return f0 + (a1*z-a2*y);//2*x+y-z + (x+2*(y+z);
      case 1:
        return f1 + (a2*x-a0*z);//y+2*(z+x);
      case 2:
        return f2 + (a0*y-a1*x);//z+2*(x+y);
      default:
        return 0;
      }
    }
  };


  class BasisFunctionsSystem{
  public:
    BasisFunctionsSystem(const ordinal_type basisCardinality_, const ordinal_type numRefCoords_, const ordinal_type  dim_) :
      basisCardinality(basisCardinality_),
      numRefCoords(numRefCoords_),
      dim(dim_),
      work("lapack_work", basisCardinality+dim*numRefCoords, 1) ,
      cellMassMat("basisMat", dim*numRefCoords,basisCardinality),
      cellRhsMat("rhsMat",dim*numRefCoords, 1) {
    };

    std::vector<int> computeBasisCoeffs(DynRankView basisCoeffs, ordinal_type& errorFlag, const DynRankView transformedBasisValuesAtRefCoordsOriented, const DynRankView funAtPhysRefCoords) {

      ordinal_type numCells = basisCoeffs.extent(0);
      std::vector<int> info(numCells);
      for(ordinal_type ic=0; ic<numCells; ++ic) {
        for(ordinal_type i=0; i<numRefCoords; ++i) {
          if (dim==1) {
            for(ordinal_type j=0; j<basisCardinality; ++j) {
              cellMassMat(i,j) = transformedBasisValuesAtRefCoordsOriented(ic,j,i);
            }
            cellRhsMat(i,0) = funAtPhysRefCoords(ic,i);
          } else
            for (ordinal_type id=0; id<dim; ++id) {
              for(ordinal_type j=0; j<basisCardinality; ++j) {
                cellMassMat(i+id*numRefCoords,j) = transformedBasisValuesAtRefCoordsOriented(ic,j,i,id);
              }
              cellRhsMat(i+id*numRefCoords,0) = funAtPhysRefCoords(ic,i,id);
            }
        }

        lapack.GELS('N', dim*numRefCoords, basisCardinality,1,
            cellMassMat.data(),
            cellMassMat.stride_1(),
            cellRhsMat.data(),
            cellRhsMat.stride_1(),
            work.data(),
            basisCardinality+dim*numRefCoords,
            &info[ic]);

        for(ordinal_type i=0; i<basisCardinality; ++i){
          basisCoeffs(ic,i) = cellRhsMat(i,0);
        }
      }
      return info;
    }
  private:
    Teuchos::LAPACK<ordinal_type,ValueType> lapack;
    ordinal_type basisCardinality, numRefCoords, dim;
    Kokkos::View<ValueType**,Kokkos::LayoutLeft,HostSpaceType> work;
    Kokkos::View<ValueType**,Kokkos::LayoutLeft,HostSpaceType> cellMassMat;
    Kokkos::View<ValueType**,Kokkos::LayoutLeft,HostSpaceType> cellRhsMat;
  };


  typedef std::array<ordinal_type,2> edgeType;
  typedef std::array<ordinal_type,4> faceType;
  typedef CellTools<DeviceSpaceType> ct;
  typedef OrientationTools<DeviceSpaceType> ots;
  typedef RealSpaceTools<DeviceSpaceType> rst;
  typedef FunctionSpaceTools<DeviceSpaceType> fst;

  using  basisType = Basis<DeviceSpaceType,ValueType,ValueType>;

  constexpr ordinal_type dim = 3;
  constexpr ordinal_type numCells = 2;
  constexpr ordinal_type numElemVertexes = 8;
  constexpr ordinal_type numTotalVertexes = 12;
  constexpr ordinal_type numSharedVertexes = 4;
  constexpr ordinal_type numSharedEdges = 4;


  ValueType  vertices_orig[numTotalVertexes][dim] = {{-1,-1,-1},{1,-1,-1},{1,1,-1},{-1,1,-1},{-1,-1,1},{1,-1,1},{1,1,1},{-1,1,1}, {-1,-1,2},{1,-1,2},{1,1,2},{-1,1,2}};
  ordinal_type hexas_orig[numCells][numElemVertexes] = {{0,1,2,3,4,5,6,7},{4,5,6,7,8,9,10,11}};  //common face is {4,5,6,7}
  faceType common_face = {{4,5,6,7}};
  faceType faceLeft = {{0, 3, 7, 4}};
  faceType faceRight = {{1, 2, 6, 5}};
  faceType faceFront = {{0, 4, 5, 1}};
  faceType faceBack = {{2, 3, 7, 6}};
  ordinal_type hexas_rotated[numCells][numElemVertexes];
  faceType faceLeftOriented, faceRightOriented, faceBackOriented, faceFrontOriented;

  static std::set<edgeType> common_edges;
  common_edges.insert(edgeType({{4,5}})); common_edges.insert(edgeType({{5,6}})); common_edges.insert(edgeType({{6,7}})); common_edges.insert(edgeType({{4,7}}));

  static ordinal_type shared_vertexes[numCells][numSharedVertexes];
  static ordinal_type edgeIndexes[numCells][numSharedEdges];
  static ordinal_type faceIndex[numCells];


  class TestResults
  {
  private:
    const DynRankView basisCoeffs, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords;
    const basisType* basis;


  public:

    TestResults(const DynRankView basisCoeffs_,
        const DynRankView transformedBasisValuesAtRefCoordsOriented_,
        const DynRankView funAtPhysRefCoords_,
        const basisType* basis_) :
          basisCoeffs(basisCoeffs_),
          transformedBasisValuesAtRefCoordsOriented(transformedBasisValuesAtRefCoordsOriented_),
          funAtPhysRefCoords(funAtPhysRefCoords_),
          basis(basis_){}

    //check that fun values are consistent at the common vertexes
    void test(ordinal_type& errorFlag, ValueType tol){

      auto numVertexDOFs = basis->getDofCount(0,0);
      if(numVertexDOFs >0) {
        bool areDifferent(false);


        for(ordinal_type j=0;j<numSharedVertexes && !areDifferent;j++)
          areDifferent = std::abs(basisCoeffs(0,basis->getDofOrdinal(0,shared_vertexes[0][j],0))
              - basisCoeffs(1,basis->getDofOrdinal(0,shared_vertexes[1][j],0))) > 10*tol;

        if(areDifferent) {
          errorFlag++;
          *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
          *outStream << "Function  DOFs on shared vertexes computed using Cell 0 basis functions are not consistent with those computed using Cell 1 bssis functions\n";
          *outStream << "Function DOFs for Cell 0 are:";
          for(ordinal_type j=0;j<numSharedVertexes;j++)
            *outStream << " " << basisCoeffs(0,basis->getDofOrdinal(0,shared_vertexes[0][j],0));
          *outStream << "\nFunction DOFs for Cell 1 are:";
          for(ordinal_type j=0;j<numSharedVertexes;j++)
            *outStream << " " << basisCoeffs(1,basis->getDofOrdinal(0,shared_vertexes[1][j],0));
          *outStream << std::endl;
        }

      }


      //check that fun values are consistent on shared edges dofs
      auto numEdgeDOFs = basis->getDofCount(1,0);
      if(numEdgeDOFs>0)
      {

        bool areDifferent(false);
        for(std::size_t iEdge=0;iEdge<numSharedEdges;iEdge++) {
        for(ordinal_type j=0;j<numEdgeDOFs && !areDifferent;j++) {
          areDifferent = std::abs(basisCoeffs(0,basis->getDofOrdinal(1,edgeIndexes[0][iEdge],j))
              - basisCoeffs(1,basis->getDofOrdinal(1,edgeIndexes[1][iEdge],j))) > 10*tol;
        }
        if(areDifferent) {
          errorFlag++;
          *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
          *outStream << "Function DOFs on shared edge " << iEdge << " computed using Cell 0 basis functions are not consistent with those computed using Cell 1 basis functions\n";
          *outStream << "Function DOFs for Cell 0 are:";
          for(ordinal_type j=0;j<numEdgeDOFs;j++)
            *outStream << " " << basisCoeffs(0,basis->getDofOrdinal(1,edgeIndexes[0][iEdge],j));
          *outStream << "\nFunction DOFs for Cell 1 are:";
          for(ordinal_type j=0;j<numEdgeDOFs;j++)
            *outStream << " " << basisCoeffs(1,basis->getDofOrdinal(1,edgeIndexes[1][iEdge],j));
          *outStream << std::endl;
        }
        }
      }


      //check that fun values are consistent on common face dofs
      auto numFaceDOFs = basis->getDofCount(2,0);
      if(numFaceDOFs > 0 && dim>2)
      {
        bool areDifferent(false);
        for(ordinal_type j=0;j<numFaceDOFs && !areDifferent;j++) {
          areDifferent = std::abs(basisCoeffs(0,basis->getDofOrdinal(2,faceIndex[0],j))
              - basisCoeffs(1,basis->getDofOrdinal(2,faceIndex[1],j))) > 100*tol;
        }

        if(areDifferent) {
          errorFlag++;
          *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
          *outStream << "Function DOFs on common face computed using Hex 0 basis functions are not consistent with those computed using Hex 1\n";
          *outStream << "Function DOFs for Hex 0 are:";
          for(ordinal_type j=0;j<numFaceDOFs;j++)
            *outStream << " " << basisCoeffs(0,basis->getDofOrdinal(2,faceIndex[0],j));
          *outStream << "\nFunction DOFs for Hex 1 are:";
          for(ordinal_type j=0;j<numFaceDOFs;j++)
            *outStream << " " << basisCoeffs(1,basis->getDofOrdinal(2,faceIndex[1],j));
          *outStream << std::endl;
        }
      }

      ordinal_type numRefCoords = funAtPhysRefCoords.extent(1);
      ordinal_type basisCardinality = basisCoeffs.extent(1);
      ordinal_type basis_dim = (transformedBasisValuesAtRefCoordsOriented.rank()==3) ? 1 : dim;

      DynRankView ConstructWithLabel(funAtRefCoordsOriented, numCells, numRefCoords, basis_dim);
      for(ordinal_type ic=0; ic<numCells; ++ic) {
        ValueType error=0;
        for(ordinal_type j=0; j<numRefCoords; ++j) {
          if (basis_dim==1) {
            for(ordinal_type k=0; k<basisCardinality; ++k)
              funAtRefCoordsOriented(ic,j,0) += basisCoeffs(ic,k)*transformedBasisValuesAtRefCoordsOriented(ic,k,j);
            error = std::max(std::abs( funAtPhysRefCoords(ic,j) - funAtRefCoordsOriented(ic,j,0)), error);
          } else {
            for(ordinal_type d=0; d<basis_dim; ++d) {
              for(ordinal_type k=0; k<basisCardinality; ++k)
                funAtRefCoordsOriented(ic,j,d) += basisCoeffs(ic,k)*transformedBasisValuesAtRefCoordsOriented(ic,k,j,d);
              error = std::max(std::abs( funAtPhysRefCoords(ic,j,d) - funAtRefCoordsOriented(ic,j,d)), error);
            }
          }
        }

        if(error>100*tol) {
          errorFlag++;
          *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
          *outStream << "Function values at reference points differ from those computed using basis functions on Cell " << ic << "\n";
          *outStream << "Function values at reference points are:\n";
          for(ordinal_type j=0; j<numRefCoords; ++j) {
            if(basis_dim==1)
              *outStream << " (" << funAtPhysRefCoords(ic,j);
            else
              *outStream << " (" << funAtPhysRefCoords(ic,j,0);
            for(ordinal_type d=1; d<basis_dim; d++)
              *outStream <<  ", " << funAtPhysRefCoords(ic,j,d);
            *outStream  << ")";
          }
          *outStream << "\nFunction values at reference points computed using basis functions are\n";
          for(ordinal_type j=0; j<numRefCoords; ++j) {
            *outStream << " (" << funAtRefCoordsOriented(ic,j,0);
            for(ordinal_type d=1; d<basis_dim; d++)
              *outStream <<  ", " << funAtRefCoordsOriented(ic,j,d);
            *outStream  << ")";
          }
          *outStream << std::endl;
        }
      }
    }
  };


  try {

    const ordinal_type order = 3;
    ordinal_type reorder[numTotalVertexes] = {0,1,2,3,4,5,6,7,8,9,10,11};

    do {
      ordinal_type orderback[numTotalVertexes];
      for(ordinal_type i=0;i<numTotalVertexes;++i) {
        orderback[reorder[i]]=i;
      }
      ValueType vertices[numTotalVertexes][dim];
      ordinal_type hexas[numCells][numElemVertexes];
      std::copy(&hexas_orig[0][0], &hexas_orig[0][0]+numCells*numElemVertexes, &hexas_rotated[0][0]);
      for (ordinal_type shift=0; shift<6; ++shift) {
        if(shift <4){
          std::rotate_copy(faceLeft.begin(), faceLeft.begin()+shift, faceLeft.end(), faceLeftOriented.begin());
          std::rotate_copy(faceRight.begin(), faceRight.begin()+shift, faceRight.end(), faceRightOriented.begin());
          for(ordinal_type ii=0; ii<4; ii++) {
            hexas_rotated[0][faceLeft[ii]] = hexas_orig[0][faceLeftOriented[ii]];
            hexas_rotated[0][faceRight[ii]] = hexas_orig[0][faceRightOriented[ii]];
          }
        } else {
          ordinal_type iirot = (shift==4) ? 1 : 3;
          std::rotate_copy(faceFront.begin(), faceFront.begin()+iirot, faceFront.end(), faceFrontOriented.begin());
          std::rotate_copy(faceBack.begin(), faceBack.begin()+iirot, faceBack.end(), faceBackOriented.begin());
          for(ordinal_type ii=0; ii<4; ii++) {
            hexas_rotated[0][faceFront[ii]] = hexas_orig[0][faceFrontOriented[ii]];
            hexas_rotated[0][faceBack[ii]] = hexas_orig[0][faceBackOriented[ii]];
          }
        }

        for(ordinal_type i=0; i<numCells;++i)
          for(ordinal_type j=0; j<numElemVertexes;++j)
            hexas[i][j] = reorder[hexas_rotated[i][j]];

        for(ordinal_type i=0; i<numTotalVertexes;++i)
          for(ordinal_type d=0; d<dim;++d)
            vertices[i][d] = vertices_orig[orderback[i]][d];

        *outStream <<  "Considering Hex 0: [ ";
        for(ordinal_type j=0; j<numElemVertexes;++j)
          *outStream << hexas[0][j] << " ";
        *outStream << "] and Hex 1: [ ";
        for(ordinal_type j=0; j<numElemVertexes;++j)
          *outStream << hexas[1][j] << " ";
        *outStream << "]\n";

        shards::CellTopology hexa(shards::getCellTopologyData<shards::Hexahedron<8> >());
        shards::CellTopology quad(shards::getCellTopologyData<shards::Quadrilateral<4> >());
        shards::CellTopology line(shards::getCellTopologyData<shards::Line<2> >());

        //computing vertices coords
        DynRankView ConstructWithLabel(physVertexes, numCells, hexa.getNodeCount(), dim);
        for(ordinal_type i=0; i<numCells; ++i)
          for(std::size_t j=0; j<hexa.getNodeCount(); ++j)
            for(ordinal_type k=0; k<dim; ++k)
              physVertexes(i,j,k) = vertices[hexas[i][j]][k];



        //computing common face and edges


        {
          faceType face={};
          edgeType edge={};
          //bool faceOrientation[numCells][4];
          for(ordinal_type i=0; i<numCells; ++i) {
            for (std::size_t iv=0; iv<hexa.getNodeCount(); ++iv) {
              auto vertex = hexas_rotated[i][hexa.getNodeMap(0,iv,0)];
              for (std::size_t isv=0; isv<common_face.size(); ++isv)
                if(common_face[isv] == vertex)
                  shared_vertexes[i][isv] = iv;
            }
            //compute faces' tangents
            for (std::size_t is=0; is<hexa.getSideCount(); ++is) {
              for (std::size_t k=0; k<hexa.getNodeCount(2,is); ++k)
                face[k]= hexas_rotated[i][hexa.getNodeMap(2,is,k)];

              //rotate and flip
              auto minElPtr= std::min_element(face.begin(), face.end());
              std::rotate(face.begin(),minElPtr,face.end());
              if(face[3]<face[1]) {auto tmp=face[1]; face[1]=face[3]; face[3]=tmp;}

              if(face == common_face) faceIndex[i]=is;
            }
            //compute edges' tangents
            for (std::size_t ie=0; ie<hexa.getEdgeCount(); ++ie) {
              for (std::size_t k=0; k<hexa.getNodeCount(1,ie); ++k)
                edge[k]= hexas_rotated[i][hexa.getNodeMap(1,ie,k)];
              std::sort(edge.begin(),edge.end());
              auto it=common_edges.find(edge);
              if(it !=common_edges.end()){
                auto edge_lid = std::distance(common_edges.begin(),it);
                edgeIndexes[i][edge_lid]=ie;
              }
            }
          }
        }

        using CG_NBasis = NodalBasisFamily<DeviceSpaceType,ValueType,ValueType>;
        using CG_DNBasis = DerivedNodalBasisFamily<DeviceSpaceType,ValueType,ValueType>;
        using CG_HBasis = HierarchicalBasisFamily<DeviceSpaceType,ValueType,ValueType>;
        std::vector<basisType*> basis_set;

        //compute reference points
        typename CG_NBasis::HGRAD_HEX warpBasis(order,POINTTYPE_WARPBLEND); //used only for computing reference points
        ordinal_type numRefCoords = warpBasis.getCardinality();
        DynRankView ConstructWithLabel(refPoints, numRefCoords, dim);
        warpBasis.getDofCoords(refPoints);

        // compute orientations for cells (one time computation)
        DynRankViewInt elemNodes(&hexas[0][0], numCells, numElemVertexes);
        Kokkos::DynRankView<Orientation,DeviceSpaceType> elemOrts("elemOrts", numCells);
        ots::getOrientation(elemOrts, elemNodes, hexa);

        //Compute physical Dof Coordinates and Reference coordinates
        DynRankView ConstructWithLabel(physRefCoords, numCells, numRefCoords, dim);
        {
          Basis_HGRAD_HEX_C1_FEM<DeviceSpaceType,ValueType,ValueType> hexaLinearBasis; //used for computing physical coordinates
          DynRankView ConstructWithLabel(hexaLinearBasisValuesAtRefCoords, hexa.getNodeCount(), numRefCoords);
          hexaLinearBasis.getValues(hexaLinearBasisValuesAtRefCoords, refPoints);
          for(ordinal_type i=0; i<numCells; ++i)
            for(ordinal_type d=0; d<dim; ++d) {
              for(ordinal_type j=0; j<numRefCoords; ++j)
                for(std::size_t k=0; k<hexa.getNodeCount(); ++k)
                  physRefCoords(i,j,d) += vertices[hexas[i][k]][d]*hexaLinearBasisValuesAtRefCoords(k,j);
            }
        }


        //HGRAD BASIS
        {
          Fun fun;
          DynRankView ConstructWithLabel(funAtPhysRefCoords, numCells, numRefCoords);
          for(ordinal_type i=0; i<numCells; ++i) {
            for(ordinal_type j=0; j<numRefCoords; ++j)
              funAtPhysRefCoords(i,j) = fun(physRefCoords(i,j,0), physRefCoords(i,j,1), physRefCoords(i,j,2));
          }

          basis_set.push_back(new typename  CG_NBasis::HGRAD_HEX(order));
          basis_set.push_back(new typename  CG_DNBasis::HGRAD_HEX(order));
          basis_set.push_back(new typename  CG_HBasis::HGRAD_HEX(order));

          for (auto basisPtr:basis_set) {
            auto& basis = *basisPtr;
            auto name = basis.getName();
            *outStream << " " << name << std::endl;
            ordinal_type basisCardinality = basis.getCardinality();

            //check that fun values at reference points coincide with those computed using basis functions
            DynRankView ConstructWithLabel(basisValuesAtRefCoordsOriented, numCells, basisCardinality, numRefCoords);
            DynRankView ConstructWithLabel(transformedBasisValuesAtRefCoordsOriented, numCells, basisCardinality, numRefCoords);

            DynRankView ConstructWithLabel(basisValuesAtRefCoords, basisCardinality, numRefCoords);
            basis.getValues(basisValuesAtRefCoords, refPoints);

            // modify basis values to account for orientations
            ots::modifyBasisByOrientation(basisValuesAtRefCoordsOriented,
                basisValuesAtRefCoords,
                elemOrts,
                &basis);

            // transform basis values
            deep_copy(transformedBasisValuesAtRefCoordsOriented,
                basisValuesAtRefCoordsOriented);

            DynRankView ConstructWithLabel(basisCoeffs, numCells, basisCardinality);

            BasisFunctionsSystem  basisFunctionsSystem(basisCardinality, numRefCoords, 1);
            auto info = basisFunctionsSystem.computeBasisCoeffs(basisCoeffs, errorFlag, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords);

            for (int ic =0; ic < numCells; ++ic) {
              if(info[ic] != 0) {
                errorFlag++;
                *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
                *outStream << "LAPACK error flag for cell " << ic << " is: " << info[ic] << std::endl;
              }
            }

            TestResults testResults(basisCoeffs, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords, basisPtr);
            testResults.test(errorFlag,tol);
            delete basisPtr;
          }
        }


        //HCURL Case
        {
          FunCurl fun;
          DynRankView ConstructWithLabel(funAtPhysRefCoords, numCells, numRefCoords, dim);
          for(ordinal_type i=0; i<numCells; ++i) {
            for(ordinal_type j=0; j<numRefCoords; ++j) {
              for(ordinal_type k=0; k<dim; ++k)
                funAtPhysRefCoords(i,j,k) = fun(physRefCoords(i,j,0), physRefCoords(i,j,1), physRefCoords(i,j,2), k);
            }
          }

          basis_set.clear();
          basis_set.push_back(new typename  CG_NBasis::HCURL_HEX(order));
          basis_set.push_back(new typename  CG_DNBasis::HCURL_HEX(order));
          basis_set.push_back(new typename  CG_HBasis::HCURL_HEX(order));

          for (auto basisPtr:basis_set) {
            auto& basis = *basisPtr;
            auto name = basis.getName();
            *outStream << " " << name << std::endl;

            ordinal_type basisCardinality = basis.getCardinality();
            DynRankView ConstructWithLabel(basisCoeffs, numCells, basisCardinality);

            //check that fun values at reference points coincide with those computed using basis functions
            DynRankView ConstructWithLabel(basisValuesAtRefCoordsOriented, numCells, basisCardinality, numRefCoords, dim);
            DynRankView ConstructWithLabel(transformedBasisValuesAtRefCoordsOriented, numCells, basisCardinality, numRefCoords, dim);
            DynRankView basisValuesAtRefCoordsCells("inValues", numCells, basisCardinality, numRefCoords, dim);


            DynRankView ConstructWithLabel(basisValuesAtRefCoords, basisCardinality, numRefCoords, dim);
            basis.getValues(basisValuesAtRefCoords, refPoints);
            rst::clone(basisValuesAtRefCoordsCells,basisValuesAtRefCoords);

            // modify basis values to account for orientations
            ots::modifyBasisByOrientation(basisValuesAtRefCoordsOriented,
                basisValuesAtRefCoordsCells,
                elemOrts,
                &basis);

            // transform basis values
            DynRankView ConstructWithLabel(jacobianAtRefCoords, numCells, numRefCoords, dim, dim);
            DynRankView ConstructWithLabel(jacobianAtRefCoords_inv, numCells, numRefCoords, dim, dim);
            ct::setJacobian(jacobianAtRefCoords, refPoints, physVertexes, hexa);
            ct::setJacobianInv (jacobianAtRefCoords_inv, jacobianAtRefCoords);
            fst::HCURLtransformVALUE(transformedBasisValuesAtRefCoordsOriented,
                jacobianAtRefCoords_inv,
                basisValuesAtRefCoordsOriented);

            BasisFunctionsSystem  basisFunctionsSystem(basisCardinality, numRefCoords, dim);
            auto info = basisFunctionsSystem.computeBasisCoeffs(basisCoeffs, errorFlag, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords);

            for (int ic =0; ic < numCells; ++ic) {
              if(info[ic] != 0) {
                errorFlag++;
                *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
                *outStream << "LAPACK error flag for cell " << ic << " is: " << info[ic] << std::endl;
              }
            }

            TestResults testResults(basisCoeffs, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords, basisPtr);
            testResults.test(errorFlag,tol);
            delete basisPtr;
          }
        }


        //HDIV Case
        {
          FunDiv fun;
          DynRankView ConstructWithLabel(funAtPhysRefCoords, numCells, numRefCoords, dim);
          for(ordinal_type i=0; i<numCells; ++i) {
            for(ordinal_type j=0; j<numRefCoords; ++j) {
              for(ordinal_type k=0; k<dim; ++k)
                funAtPhysRefCoords(i,j,k) = fun(physRefCoords(i,j,0), physRefCoords(i,j,1), physRefCoords(i,j,2), k);
            }
          }
          basis_set.clear();
          basis_set.push_back(new typename  CG_NBasis::HDIV_HEX(order));
          basis_set.push_back(new typename  CG_DNBasis::HDIV_HEX(order));
          basis_set.push_back(new typename  CG_HBasis::HDIV_HEX(order));

          for (auto basisPtr:basis_set) {
            auto& basis = *basisPtr;
            auto name = basis.getName();
            *outStream << " " << name << std::endl;
            ordinal_type basisCardinality = basis.getCardinality();

            //check that fun values at reference points coincide with those computed using basis functions
            DynRankView ConstructWithLabel(basisValuesAtRefCoordsOriented, numCells, basisCardinality, numRefCoords, dim);
            DynRankView ConstructWithLabel(transformedBasisValuesAtRefCoordsOriented, numCells, basisCardinality, numRefCoords, dim);
            DynRankView basisValuesAtRefCoordsCells("inValues", numCells, basisCardinality, numRefCoords, dim);

            DynRankView ConstructWithLabel(basisValuesAtRefCoords, basisCardinality, numRefCoords, dim);
            basis.getValues(basisValuesAtRefCoords, refPoints);
            rst::clone(basisValuesAtRefCoordsCells,basisValuesAtRefCoords);

            // modify basis values to account for orientations
            ots::modifyBasisByOrientation(basisValuesAtRefCoordsOriented,
                basisValuesAtRefCoordsCells,
                elemOrts,
                &basis);

            // transform basis values
            DynRankView ConstructWithLabel(jacobianAtRefCoords, numCells, numRefCoords, dim, dim);
            DynRankView ConstructWithLabel(jacobianAtRefCoords_det, numCells, numRefCoords);
            ct::setJacobian(jacobianAtRefCoords, refPoints, physVertexes, hexa);
            ct::setJacobianDet (jacobianAtRefCoords_det, jacobianAtRefCoords);
            fst::HDIVtransformVALUE(transformedBasisValuesAtRefCoordsOriented,
                jacobianAtRefCoords,
                jacobianAtRefCoords_det,
                basisValuesAtRefCoordsOriented);

            DynRankView ConstructWithLabel(basisCoeffs, numCells, basisCardinality);


            BasisFunctionsSystem  basisFunctionsSystem(basisCardinality, numRefCoords, dim);
            auto info = basisFunctionsSystem.computeBasisCoeffs(basisCoeffs, errorFlag, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords);

            for (int ic =0; ic < numCells; ++ic) {
              if(info[ic] != 0) {
                errorFlag++;
                *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
                *outStream << "LAPACK error flag for cell " << ic << " is: " << info[ic] << std::endl;
              }
            }

            TestResults testResults(basisCoeffs, transformedBasisValuesAtRefCoordsOriented, funAtPhysRefCoords, basisPtr);
            testResults.test(errorFlag,tol);
            delete basisPtr;
          }
        }
      } //rotation of first cell vertices
    } while(std::next_permutation(&reorder[0]+4, &reorder[0]+8)); //reorder vertices of common face

  } catch (std::exception &err) {
    std::cout << " Exeption\n";
    *outStream << err.what() << "\n\n";
    errorFlag = -1000;
  }


  if (errorFlag != 0)
    std::cout << "End Result: TEST FAILED = " << errorFlag << "\n";
  else
    std::cout << "End Result: TEST PASSED\n";

  // reset format state of std::cout
  std::cout.copyfmt(oldFormatState);

  return errorFlag;
}
}
}