1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
/*****************************************************************************/
/* Sample driver for AZTEC/ML package. The software is tested by reading in */
/* a matrix stored in a file called .data, using a zero initial guess */
/* and a random right hand side, and then solving the system of equations */
/* using AZTECs gmres solver and ML preconditioner */
/* */
/* NOTE: the file .data must exist on all processors (though it need only */
/* contain the number of rows in the matrix on all but the first processor) */
/* */
/* Author: Dawn Chamberlain, Div 9222, Sandia National Labs */
/* date: 10/21/99 */
/*****************************************************************************/
#include "ml_include.h"
#if (defined(HAVE_ML_AZTEC2_1) || defined(HAVE_ML_AZTECOO))
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "az_aztec.h"
#include "ml_include.h"
#include <math.h>
extern int AZ_using_fortran;
int main(int argc, char *argv[])
{
int num_PDE_eqns=1, N_levels=10, nsmooth=1;
int leng, level, N_grid_pts, coarsest_level;
/* See Aztec User's Guide for more information on the */
/* variables that follow. */
int proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE];
double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE];
/* data structure for matrix corresponding to the fine grid */
int *data_org = NULL, *update = NULL, *external = NULL;
int *update_index = NULL, *extern_index = NULL;
int *cpntr = NULL;
int *bindx = NULL, N_update, iii;
double *val = NULL;
double *xxx, *rhs;
AZ_MATRIX *Amat;
AZ_PRECOND *Pmat = NULL;
ML *ml;
FILE *fp;
int ch,i;
struct AZ_SCALING *scaling;
double solve_time, setup_time, start_time;
ML_Aggregate *ag;
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
/* get number of processors and the name of this processor */
AZ_set_proc_config(proc_config, MPI_COMM_WORLD);
#else
AZ_set_proc_config(proc_config, AZ_NOT_MPI);
#endif
#ifdef binary
fp=fopen(".data","rb");
#else
fp=fopen(".data","r");
#endif
if (fp==NULL)
{
printf("Couldn't open file .data\nYou may need to gunzip it and copy it from the example source directory.\n");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
exit(EXIT_SUCCESS);
}
#ifdef binary
fread(&leng, sizeof(int), 1, fp);
#else
fscanf(fp,"%d",&leng);
#endif
fclose(fp);
N_grid_pts=leng/num_PDE_eqns;
/* initialize the list of global indices. NOTE: the list of global */
/* indices must be in ascending order so that subsequent calls to */
/* AZ_find_index() will function properly. */
AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns,
AZ_linear);
AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config);
AZ_transform( proc_config, &external, bindx,
val, update, &update_index,
&extern_index, &data_org, N_update,
0, 0, 0, &cpntr, AZ_MSR_MATRIX);
Amat = AZ_matrix_create( leng );
AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL);
Amat->matrix_type = data_org[AZ_matrix_type];
data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border];
start_time = AZ_second();
ML_Create(&ml, N_levels);
/* set up discretization matrix and matrix vector function */
AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config);
ML_Aggregate_Create( &ag );
ML_Aggregate_Set_CoarsenScheme_Uncoupled(ag);
ML_Aggregate_Set_Threshold(ag,0.0);
coarsest_level = ML_Gen_MGHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag);
coarsest_level = N_levels - coarsest_level;
if ( proc_config[AZ_node] == 0 )
printf("Coarse level = %d \n", coarsest_level);
/* set up smoothers */
for (level = N_levels-1; level > coarsest_level; level--) {
/* This is the symmetric Gauss-Seidel smoothing. In parallel, */
/* it is not a true Gauss-Seidel in that each processor */
/* does a Gauss-Seidel on its local submatrix independent of the */
/* other processors. */
ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth,1.);
ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth,1.);
/*
ML_Gen_Smoother_Jacobi(ml , level, ML_PRESMOOTHER, nsmooth, .67);
ML_Gen_Smoother_Jacobi(ml , level, ML_POSTSMOOTHER, nsmooth, .67 );
*/
}
ML_Gen_CoarseSolverSuperLU( ml, coarsest_level);
ML_Gen_Solver(ml, ML_MGV, N_levels-1, coarsest_level);
AZ_defaults(options, params);
options[AZ_solver] = AZ_cg;
options[AZ_scaling] = AZ_none;
options[AZ_precond] = AZ_user_precond;
options[AZ_conv] = AZ_r0;
options[AZ_output] = 1;
options[AZ_max_iter] = 1500;
options[AZ_poly_ord] = 5;
options[AZ_kspace] = 130;
params[AZ_tol] = 1.0e-8;
AZ_set_ML_preconditioner(&Pmat, Amat, ml, options);
setup_time = AZ_second() - start_time;
xxx = (double *) malloc( leng*sizeof(double));
rhs=(double *)malloc(leng*sizeof(double));
for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0;
/* Set rhs */
fp = fopen("AZ_capture_rhs.dat","r");
if (fp == NULL) {
if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n");
AZ_random_vector(rhs, data_org, proc_config);
AZ_reorder_vec(rhs, data_org, update_index, NULL);
}
else {
ch = getc(fp);
if (ch == 'S') {
while ( (ch = getc(fp)) != '\n') ;
}
else ungetc(ch,fp);
for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++)
fscanf(fp,"%lf",&(rhs[i]));
fclose(fp);
}
/* Set x */
fp = fopen("AZ_capture_init_guess.dat","r");
if (fp != NULL) {
ch = getc(fp);
if (ch == 'S') {
while ( (ch = getc(fp)) != '\n') ;
}
else ungetc(ch,fp);
for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++)
fscanf(fp,"%lf",&(xxx[i]));
fclose(fp);
options[AZ_conv] = AZ_expected_values;
}
/* if Dirichlet BC ... put the answer in */
for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) {
if ( (val[i] > .99999999) && (val[i] < 1.0000001))
xxx[i] = rhs[i];
}
fp = fopen("AZ_no_multilevel.dat","r");
scaling = AZ_scaling_create();
start_time = AZ_second();
if (fp != NULL) {
fclose(fp);
options[AZ_precond] = AZ_none;
options[AZ_scaling] = AZ_sym_diag;
options[AZ_ignore_scaling] = AZ_TRUE;
options[AZ_keep_info] = 1;
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling);
/*
options[AZ_pre_calc] = AZ_reuse;
options[AZ_conv] = AZ_expected_values;
if (proc_config[AZ_node] == 0)
printf("\n-------- Second solve with improved convergence test -----\n");
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling);
if (proc_config[AZ_node] == 0)
printf("\n-------- Third solve with improved convergence test -----\n");
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling);
*/
}
else {
options[AZ_keep_info] = 1;
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling);
options[AZ_pre_calc] = AZ_reuse;
options[AZ_conv] = AZ_expected_values;
/*
if (proc_config[AZ_node] == 0)
printf("\n-------- Second solve with improved convergence test -----\n");
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling);
if (proc_config[AZ_node] == 0)
printf("\n-------- Third solve with improved convergence test -----\n");
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling);
*/
}
solve_time = AZ_second() - start_time;
if (proc_config[AZ_node] == 0)
printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time);
ML_Aggregate_Destroy(&ag);
ML_Destroy(&ml);
AZ_free((void *) Amat->data_org);
AZ_free((void *) Amat->val);
AZ_free((void *) Amat->bindx);
AZ_free((void *) update);
AZ_free((void *) external);
AZ_free((void *) extern_index);
AZ_free((void *) update_index);
AZ_scaling_destroy(&scaling);
if (Amat != NULL) AZ_matrix_destroy(&Amat);
if (Pmat != NULL) AZ_precond_destroy(&Pmat);
free(xxx);
free(rhs);
#ifdef HAVE_MPI
MPI_Finalize();
#endif
exit(EXIT_SUCCESS);
}
#else
#include <stdlib.h>
#include <stdio.h>
#ifdef HAVE_MPI
#include "mpi.h"
#endif
int main(int argc, char *argv[])
{
/* still need to deal with MPI, some architecture don't like
an exit(0) without MPI_Finalize() */
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
puts("This test requires Aztec.");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
exit(EXIT_SUCCESS);
}
#endif
|