1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
#include "ml_config.h"
#include "ml_common.h"
#if defined(HAVE_ML_MLAPI) && defined(HAVE_ML_GALERI)
#include "MLAPI_Space.h"
#include "MLAPI_Operator.h"
#include "MLAPI_MultiVector.h"
#include "MLAPI_Gallery.h"
#include "MLAPI_Expressions.h"
#include "MLAPI_MultiLevelSA.h"
using namespace Teuchos;
using namespace MLAPI;
// ============== //
// example driver //
// ============== //
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
try {
// Initialize the workspace and set the output level
Init();
// global dimension of the problem
int NumGlobalElements = 10000;
// define the space for fine level vectors and operators.
Space S(NumGlobalElements);
// define the linear system matrix.
Operator A = Gallery("Laplace2D", S);
// set parameters for aggregation and smoothers
// NOTE: only a limited subset of the parameters accepted by
// class ML_Epetra::MultiLevelPreconditioner is supported
// by MLAPI::MultiLevelSA
Teuchos::ParameterList MLList;
MLList.set("max levels",3);
MLList.set("aggregation: type", "Uncoupled");
MLList.set("aggregation: damping factor", 1.333);
MLList.set("smoother: type","symmetric Gauss-Seidel");
MLList.set("smoother: sweeps",1);
MLList.set("smoother: damping factor",1.0);
MLList.set("coarse: max size",3);
MLList.set("coarse: type","Amesos-KLU");
MultiLevelSA P(A, MLList);
// Here we define a simple Richardson method for the
// solution of A x = b. The preconditioner is P,
// the exact solution (x_ex) is a random vector, the
// starting solution (x) is the zero vector.
MultiVector x_ex(S);
MultiVector x(S);
MultiVector b(S);
MultiVector r(S);
MultiVector z(S);
x_ex.Random();
b = A * x_ex;
x = 0.0;
double OldNorm = 1.0;
double Tolerance = 1e-13;
int MaxIters = 30;
// ================ //
// Richardson cycle //
// ================ //
for (int i = 0 ; i < MaxIters ; ++i) {
r = b - A * x; // new residual
z = P * r; // apply preconditioner with zero initial guess
x = x + z; // update solution
// compute the A-norm of the error
double NewNorm = sqrt((x - x_ex) * (A * (x - x_ex)));
if (GetMyPID() == 0 && i) {
std::cout << "||x - x_ex||_A = ";
std::cout.width(15);
std::cout << NewNorm << ", ";
std::cout << "reduction = ";
std::cout.width(15);
std::cout << NewNorm / OldNorm << std::endl;
}
if (NewNorm < Tolerance)
break;
OldNorm = NewNorm;
}
// finalize the MLAPI workspace
Finalize();
}
catch (const int e) {
std::cout << "Caught integer exception, code = " << e << std::endl;
}
catch (...) {
std::cout << "problems here..." << std::endl;
}
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return(0);
}
#else
#include "ml_include.h"
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
puts("This MLAPI example requires the following configuration options:");
puts("\t--enable-epetra");
puts("\t--enable-teuchos");
puts("\t--enable-ifpack");
puts("\t--enable-amesos");
puts("\t--enable-galeri");
puts("Please check your configure line.");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return(0);
}
#endif // if defined(HAVE_ML_MLAPI)
|