1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
|
// Copyright 2018 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cloudspanner
import (
"bytes"
"context"
"errors"
"fmt"
"math"
"math/rand"
"sort"
"sync"
"time"
"cloud.google.com/go/spanner"
"github.com/google/trillian"
"github.com/google/trillian/storage"
"github.com/google/trillian/storage/cache"
"github.com/google/trillian/storage/cloudspanner/spannerpb"
"github.com/google/trillian/types"
"github.com/transparency-dev/merkle/rfc6962"
"go.opencensus.io/trace"
"golang.org/x/sync/semaphore"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
"google.golang.org/protobuf/types/known/timestamppb"
"k8s.io/klog/v2"
)
const (
leafDataTbl = "LeafData"
seqDataByMerkleHashIdx = "SequenceByMerkleHash"
seqDataTbl = "SequencedLeafData"
unseqTable = "Unsequenced"
// t.TreeType: 1 = Log, 3 = PreorderedLog.
// t.TreeState: 1 = Active, 5 = Draining.
getActiveLogIDsSQL = `SELECT t.TreeID FROM TreeRoots t
WHERE (t.TreeType = 1 OR t.TreeType = 3)
AND (t.TreeState = 1 OR t.TreeState = 5)
AND t.Deleted=false`
)
// LogStorageOptions are tuning, experiments and workarounds that can be used.
type LogStorageOptions struct {
TreeStorageOptions
// DequeueAcrossMerkleBuckets controls whether DequeueLeaves will only dequeue
// from within the chosen Time+Merkle bucket, or whether it will attempt to
// continue reading from contiguous Merkle buckets until a sufficient number
// of leaves have been dequeued, or the entire Time bucket has been read.
DequeueAcrossMerkleBuckets bool
// DequeueAcrossMerkleBucketsRangeFraction specifies the fraction of Merkle
// keyspace to dequeue from when using multi-bucket-dequeue.
DequeueAcrossMerkleBucketsRangeFraction float64
}
var (
// Spanner DB columns:
colLeafIdentityHash = "LeafIdentityHash"
colLeafValue = "LeafValue"
colExtraData = "ExtraData"
colMerkleLeafHash = "MerkleLeafHash"
colSequenceNumber = "SequenceNumber"
colQueueTimestampNanos = "QueueTimestampNanos"
)
type leafDataCols struct {
TreeID int64
LeafIdentityHash []byte
LeafValue []byte
ExtraData []byte
QueueTimestampNanos int64
}
type sequencedLeafDataCols struct {
TreeID int64
SequenceNumber int64
LeafIdentityHash []byte
MerkleLeafHash []byte
IntegrateTimestampNanos int64
}
type unsequencedCols struct {
TreeID int64
Bucket int64
QueueTimestampNanos int64
MerkleLeafHash []byte
LeafIdentityHash []byte
}
// NewLogStorage initialises and returns a new LogStorage.
func NewLogStorage(client *spanner.Client) storage.LogStorage {
return NewLogStorageWithOpts(client, LogStorageOptions{})
}
// NewLogStorageWithOpts initialises and returns a new LogStorage.
// The opts parameter can be used to enable custom workarounds.
func NewLogStorageWithOpts(client *spanner.Client, opts LogStorageOptions) storage.LogStorage {
if got := opts.DequeueAcrossMerkleBucketsRangeFraction; got <= 0 || got > 1.0 {
opts.DequeueAcrossMerkleBucketsRangeFraction = 1.0
}
return &logStorage{
ts: newTreeStorageWithOpts(client, opts.TreeStorageOptions),
// This number is taken from the maximum number of in-flight
// transaction in the mutation pool. Add a field to opts if we decide to
// adopt this strategy.
writeSem: semaphore.NewWeighted(128),
opts: opts,
}
}
// logStorage provides a Cloud Spanner backed trillian.LogStorage implementation.
// See third_party/golang/trillian/storage/log_storage.go for more details.
type logStorage struct {
// ts provides the merkle-tree level primitives which are built upon by this
// logStorage.
ts *treeStorage
// writeSem controls how many concurrent writes QueueLeaves/AddSequencedLeaves will do.
writeSem *semaphore.Weighted
// Additional options applied to this logStorage
opts LogStorageOptions
}
func (ls *logStorage) CheckDatabaseAccessible(ctx context.Context) error {
return checkDatabaseAccessible(ctx, ls.ts.client)
}
func (ls *logStorage) readOnlyTX() *spanner.ReadOnlyTransaction {
var staleness spanner.TimestampBound
if ls.opts.ReadOnlyStaleness > 0 {
staleness = spanner.ExactStaleness(ls.opts.ReadOnlyStaleness)
} else {
staleness = spanner.StrongRead()
}
return ls.ts.client.ReadOnlyTransaction().WithTimestampBound(staleness)
}
func (ls *logStorage) GetActiveLogIDs(ctx context.Context) ([]int64, error) {
ids := []int64{}
// We have to use SQL as Read() doesn't work against an index.
stmt := spanner.NewStatement(getActiveLogIDsSQL)
rows := ls.readOnlyTX().Query(ctx, stmt)
if err := rows.Do(func(r *spanner.Row) error {
var id int64
if err := r.Columns(&id); err != nil {
return err
}
ids = append(ids, id)
return nil
}); err != nil {
klog.Warningf("GetActiveLogIDs: %v", err)
return nil, fmt.Errorf("problem executing getActiveLogIDsSQL: %v", err)
}
return ids, nil
}
func newLogCache(tree *trillian.Tree) (*cache.SubtreeCache, error) {
return cache.NewLogSubtreeCache(rfc6962.DefaultHasher), nil
}
func (ls *logStorage) begin(ctx context.Context, tree *trillian.Tree, readonly bool, stx spanRead) (*logTX, error) {
tx, err := ls.ts.begin(ctx, tree, newLogCache, stx)
if err != nil {
return nil, err
}
ltx := &logTX{
ls: ls,
dequeued: make(map[string]*QueuedEntry),
treeTX: tx,
}
// Needed to generate ErrTreeNeedsInit in SnapshotForTree and other methods.
if err := ltx.getLatestRoot(ctx); err == storage.ErrTreeNeedsInit {
return ltx, err
} else if err != nil {
defer func() {
if err := tx.Close(); err != nil {
klog.Errorf("conn.Close(): %v", err)
}
}()
return nil, err
}
return ltx, nil
}
func (ls *logStorage) BeginForTree(ctx context.Context, treeID int64) (storage.LogTreeTX, error) {
return nil, ErrNotImplemented
}
func (ls *logStorage) ReadWriteTransaction(ctx context.Context, tree *trillian.Tree, f storage.LogTXFunc) error {
_, err := ls.ts.client.ReadWriteTransaction(ctx, func(ctx context.Context, stx *spanner.ReadWriteTransaction) error {
tx, err := ls.begin(ctx, tree, false /* readonly */, stx)
if err != nil && err != storage.ErrTreeNeedsInit {
return err
}
if err := f(ctx, tx); err != nil {
return err
}
return tx.flushSubtrees(ctx)
})
return err
}
func (ls *logStorage) SnapshotForTree(ctx context.Context, tree *trillian.Tree) (storage.ReadOnlyLogTreeTX, error) {
return ls.begin(ctx, tree, true /* readonly */, ls.ts.client.ReadOnlyTransaction())
}
func (ls *logStorage) QueueLeaves(ctx context.Context, tree *trillian.Tree, leaves []*trillian.LogLeaf, qTimestamp time.Time) ([]*trillian.QueuedLogLeaf, error) {
_, treeConfig, err := ls.ts.getTreeAndConfig(ctx, tree)
if err != nil {
return nil, err
}
config, ok := treeConfig.(*spannerpb.LogStorageConfig)
if !ok {
return nil, status.Errorf(codes.Internal, "got unexpected config type for Log operation: %T", treeConfig)
}
now := time.Now().UTC().Unix()
bucketPrefix := (now % config.NumUnseqBuckets) << 8
results := make([]*trillian.QueuedLogLeaf, len(leaves))
writeDupes := make(map[string][]int)
qTS := qTimestamp.UnixNano()
var wg sync.WaitGroup
for i, l := range leaves {
wg.Add(1)
// Capture values of i and l for later reference in the MutationResultFunc below.
i := i
l := l
go func() {
defer wg.Done()
// The insert of the leafdata and the unsequenced work item must happen atomically.
m1, err := spanner.InsertStruct(leafDataTbl, leafDataCols{
TreeID: tree.TreeId,
LeafIdentityHash: l.LeafIdentityHash,
LeafValue: l.LeafValue,
ExtraData: l.ExtraData,
QueueTimestampNanos: qTS,
})
if err != nil {
results[i] = &trillian.QueuedLogLeaf{Status: status.Convert(err).Proto()}
return
}
b := bucketPrefix | int64(l.MerkleLeafHash[0])
m2, err := spanner.InsertStruct(unseqTable, unsequencedCols{
TreeID: tree.TreeId,
Bucket: b,
QueueTimestampNanos: qTS,
MerkleLeafHash: l.MerkleLeafHash,
LeafIdentityHash: l.LeafIdentityHash,
})
if err != nil {
results[i] = &trillian.QueuedLogLeaf{Status: status.Convert(err).Proto()}
return
}
_, err = ls.ts.client.Apply(ctx, []*spanner.Mutation{m1, m2})
if spanner.ErrCode(err) == codes.AlreadyExists {
k := string(l.LeafIdentityHash)
writeDupes[k] = append(writeDupes[k], i)
} else if err != nil {
results[i] = &trillian.QueuedLogLeaf{Status: status.Convert(err).Proto()}
} else {
results[i] = &trillian.QueuedLogLeaf{Leaf: l} // implicit OK status
}
}()
}
// Wait for all of our mutations to apply (or fail):
wg.Wait()
// Finally, read back any leaves which failed with an already exists error
// when we tried to insert them:
err = ls.readDupeLeaves(ctx, tree.TreeId, writeDupes, results)
if err != nil {
return nil, err
}
return results, nil
}
func (ls *logStorage) AddSequencedLeaves(ctx context.Context, tree *trillian.Tree, leaves []*trillian.LogLeaf, ts time.Time) ([]*trillian.QueuedLogLeaf, error) {
ctx, span := trace.StartSpan(ctx, "AddSequencedLeaves")
defer span.End()
okProto := status.New(codes.OK, "OK").Proto()
_, span = trace.StartSpan(ctx, "insert")
defer span.End()
res := make([]*trillian.QueuedLogLeaf, len(leaves))
errs := make(chan error, 1)
var wg sync.WaitGroup
for i, l := range leaves {
l.QueueTimestamp = timestamppb.New(ts)
if err := l.QueueTimestamp.CheckValid(); err != nil {
return nil, fmt.Errorf("got invalid queue timestamp: %w", err)
}
// Capture the values for later reference in the MutationResultFunc below.
i, l := i, l
res[i] = &trillian.QueuedLogLeaf{Status: okProto}
wg.Add(1)
var err error
// The insert of the LeafData and SequencedLeafData must happen atomically.
m1, err := spanner.InsertStruct(leafDataTbl, leafDataCols{
TreeID: tree.TreeId,
LeafIdentityHash: l.LeafIdentityHash,
LeafValue: l.LeafValue,
ExtraData: l.ExtraData,
QueueTimestampNanos: ts.UnixNano(),
})
if err != nil {
return nil, err
}
m2, err := spanner.InsertStruct(seqDataTbl, sequencedLeafDataCols{
TreeID: tree.TreeId,
SequenceNumber: l.LeafIndex,
LeafIdentityHash: l.LeafIdentityHash,
MerkleLeafHash: l.MerkleLeafHash,
IntegrateTimestampNanos: 0,
})
if err != nil {
return nil, err
}
m := []*spanner.Mutation{m1, m2}
doneFunc := func(err error) {
defer wg.Done()
if err != nil {
// If failed because of a duplicate insert, set the status correspondingly.
if status.Code(err) == codes.AlreadyExists {
klog.Infof("Found already exists: index=%v, id=%v", l.LeafIndex, l.LeafIdentityHash)
res[i].Status = status.New(codes.FailedPrecondition, "conflicting LeafIndex or LeafIdentityHash").Proto()
return
}
select {
case errs <- err:
default: // Skip this error, we only need one.
}
}
}
if err := ls.writeSem.Acquire(ctx, 1); err != nil {
doneFunc(err)
} else {
go func() {
defer ls.writeSem.Release(1)
doneFunc(func() error {
_, err := ls.ts.client.Apply(ctx, m)
return err
}())
}()
}
}
span.End()
// Wait for all of our mutations to apply (or fail).
_, span = trace.StartSpan(ctx, "wait")
wg.Wait()
span.End()
// Check if any failed, and return the first error if so.
select {
case err := <-errs:
return nil, err
default: // No error.
}
return res, nil
}
// readDupeLeaves reads the leaves whose ids are passed as keys in the dupes map,
// and stores them in results.
func (ls *logStorage) readDupeLeaves(ctx context.Context, logID int64, dupes map[string][]int, results []*trillian.QueuedLogLeaf) error {
numDupes := len(dupes)
if numDupes == 0 {
return nil
}
klog.V(2).Infof("dupe rowsToRead: %v", numDupes)
ids := make([][]byte, 0, numDupes)
for k := range dupes {
ids = append(ids, []byte(k))
}
dupesRead := 0
tx := ls.ts.client.Single()
err := readLeaves(ctx, tx, logID, ids, func(l *trillian.LogLeaf) {
klog.V(2).Infof("Found already exists dupe: %v", l)
dupesRead++
indices := dupes[string(l.LeafIdentityHash)]
klog.V(2).Infof("Indices %v", indices)
if len(indices) == 0 {
klog.Warningf("Logic error: Spanner returned a leaf %x, but it matched no requested index", l.LeafIdentityHash)
return
}
for _, i := range indices {
leaf := l
results[i] = &trillian.QueuedLogLeaf{
Leaf: leaf,
Status: status.Newf(codes.AlreadyExists, "leaf already exists: %v", l.LeafIdentityHash).Proto(),
}
}
})
tx.Close()
if err != nil {
return err
}
if got, want := dupesRead, numDupes; got != want {
return fmt.Errorf("read unexpected number of dupe rows %d, want %d", got, want)
}
return nil
}
// logTX is a concrete implementation of the Trillian storage.LogStorage
// interface.
type logTX struct {
// treeTX embeds the merkle-tree level transactional actions.
*treeTX
// logStorage is the logStorage which begat this logTX.
ls *logStorage
// numSequenced holds the number of leaves sequenced by this transaction.
numSequenced int64
// dequeued is a map of LeafIdentityHash to QueuedEntry containing entries for
// everything dequeued by this transaction.
// This is required to recover the primary key for the unsequenced entry in
// UpdateSequencedLeaves.
dequeued map[string]*QueuedEntry
}
func (tx *logTX) getLogStorageConfig() *spannerpb.LogStorageConfig {
return tx.config.(*spannerpb.LogStorageConfig)
}
// LatestSignedLogRoot returns the freshest SignedLogRoot for this log at the
// time the transaction was started.
func (tx *logTX) LatestSignedLogRoot(ctx context.Context) (*trillian.SignedLogRoot, error) {
currentSTH, err := tx.currentSTH(ctx)
if err != nil {
return nil, err
}
writeRev, err := tx.writeRev(ctx)
if err != nil {
return nil, err
}
if got, want := currentSTH.TreeRevision+1, writeRev; got != want {
return nil, fmt.Errorf("inconsistency: currentSTH.TreeRevision+1 (%d) != writeRev (%d)", got, want)
}
// Put logRoot back together. Fortunately LogRoot has a deterministic serialization.
logRoot, err := (&types.LogRootV1{
TimestampNanos: uint64(currentSTH.TsNanos),
RootHash: currentSTH.RootHash,
TreeSize: uint64(currentSTH.TreeSize),
Metadata: currentSTH.Metadata,
}).MarshalBinary()
if err != nil {
return nil, err
}
// We already read the latest root as part of starting the transaction (in
// order to calculate the writeRevision), so we just return that data here:
return &trillian.SignedLogRoot{LogRoot: logRoot}, nil
}
// StoreSignedLogRoot stores the provided root.
// This method will return an error if the caller attempts to store more than
// one root per log for a given tree size.
func (tx *logTX) StoreSignedLogRoot(ctx context.Context, root *trillian.SignedLogRoot) error {
writeRev, err := tx.writeRev(ctx)
if err == storage.ErrTreeNeedsInit {
writeRev = 0
} else if err != nil {
return err
}
var logRoot types.LogRootV1
if err := logRoot.UnmarshalBinary(root.LogRoot); err != nil {
klog.Warningf("Failed to parse log root: %x %v", root.LogRoot, err)
return err
}
m := spanner.Insert(
"TreeHeads",
[]string{
"TreeID",
"TimestampNanos",
"TreeSize",
"RootHash",
"RootSignature",
"TreeRevision",
"TreeMetadata",
},
[]interface{}{
int64(tx.treeID),
int64(logRoot.TimestampNanos),
int64(logRoot.TreeSize),
logRoot.RootHash,
[]byte{},
writeRev,
logRoot.Metadata,
})
stx, ok := tx.stx.(*spanner.ReadWriteTransaction)
if !ok {
return ErrWrongTXType
}
return stx.BufferWrite([]*spanner.Mutation{m})
}
func readLeaves(ctx context.Context, stx *spanner.ReadOnlyTransaction, logID int64, ids [][]byte, f func(*trillian.LogLeaf)) error {
leafTable := leafDataTbl
cols := []string{colLeafIdentityHash, colLeafValue, colExtraData, colQueueTimestampNanos}
keys := make([]spanner.KeySet, 0)
for _, l := range ids {
keys = append(keys, spanner.Key{logID, l})
}
rows := stx.Read(ctx, leafTable, spanner.KeySets(keys...), cols)
return rows.Do(func(r *spanner.Row) error {
var l trillian.LogLeaf
var qTimestamp int64
if err := r.Columns(&l.LeafIdentityHash, &l.LeafValue, &l.ExtraData, &qTimestamp); err != nil {
return err
}
l.QueueTimestamp = timestamppb.New(time.Unix(0, qTimestamp))
if err := l.QueueTimestamp.CheckValid(); err != nil {
return fmt.Errorf("got invalid queue timestamp: %w", err)
}
f(&l)
return nil
})
}
// DequeueLeaves removes [0, limit) leaves from the to-be-sequenced queue.
// The leaves returned are not guaranteed to be in any particular order.
// The caller should assign sequence numbers and pass the updated leaves as
// arguments to the UpdateSequencedLeaves method.
//
// The LogLeaf structs returned by this method will not be fully populated;
// only the LeafIdentityHash and MerkleLeafHash fields will contain data, this
// should be sufficient for assigning sequence numbers with this storage impl.
//
// TODO(al): cutoff is currently ignored.
func (tx *logTX) DequeueLeaves(ctx context.Context, limit int, cutoff time.Time) ([]*trillian.LogLeaf, error) {
if limit <= 0 {
return nil, fmt.Errorf("limit should be > 0, got %d", limit)
}
// Special case pre-ordered logs.
if tx.treeType == trillian.TreeType_PREORDERED_LOG {
sth, err := tx.currentSTH(ctx)
if err != nil {
return nil, err
}
return tx.GetLeavesByRange(ctx, sth.TreeSize, int64(limit))
}
// Decide which bucket(s) to dequeue from.
// The high 8 bits of the bucket key is a time based ring - at any given
// moment, FEs queueing entries will be adding them to different buckets
// than we're dequeuing from here - the low 8 bits are the first byte of the
// merkle hash of the entry.
now := time.Now().UTC()
cfg := tx.getLogStorageConfig()
// Select a prefix that is likley to be on a different span server to spread load.
prefix := int64((((now.Unix() + cfg.NumUnseqBuckets/2) % cfg.NumUnseqBuckets) << 8))
// Choose a starting point in the merkle prefix range, and calculate the
// start/limit of the merkle range we'll dequeue from.
// It seems to be much better to tune for keeping this range small, and allow
// the signer to run multiple times per second than try to dequeue a large batch
// which spans a large number of merkle prefixes.
const suffixBuckets = 0x100
suffixStart := rand.Int63n(suffixBuckets)
suffixFraction := float64(cfg.NumMerkleBuckets) / float64(suffixBuckets)
if tx.ls.opts.DequeueAcrossMerkleBuckets {
suffixFraction = tx.ls.opts.DequeueAcrossMerkleBucketsRangeFraction
}
suffixEnd := suffixStart + int64(math.Ceil(suffixBuckets*suffixFraction))
keysets := []spanner.KeySet{}
if suffixEnd < suffixBuckets {
keysets = append(keysets,
spanner.KeyRange{
Start: spanner.Key{tx.treeID, prefix | suffixStart},
End: spanner.Key{tx.treeID, prefix | suffixEnd},
Kind: spanner.ClosedClosed,
})
} else {
// The range is too big and wraps around, overflowing a byte value, so we'll
// start the second range at 0 and end at the upper limit modulo suffixBuckets:
suffixEnd %= suffixBuckets
keysets = append(keysets,
spanner.KeyRange{
Start: spanner.Key{tx.treeID, prefix | suffixStart},
End: spanner.Key{tx.treeID, prefix | suffixBuckets - 1},
Kind: spanner.ClosedClosed,
},
spanner.KeyRange{
Start: spanner.Key{tx.treeID, prefix},
// XXX: When suffixFraction = 1, this produces an overlapping range at suffixStart
End: spanner.Key{tx.treeID, prefix | suffixEnd},
Kind: spanner.ClosedClosed,
})
}
errBreak := errors.New("break")
ret := make([]*trillian.LogLeaf, 0, limit)
if err := tx.stx.Read(ctx, unseqTable, spanner.KeySets(keysets...),
[]string{"Bucket", colQueueTimestampNanos, colMerkleLeafHash, colLeafIdentityHash},
).Do(func(r *spanner.Row) error {
var l trillian.LogLeaf
var qe QueuedEntry
if err := r.Columns(&qe.bucket, &qe.timestamp, &l.MerkleLeafHash, &l.LeafIdentityHash); err != nil {
return err
}
l.QueueTimestamp = timestamppb.New(time.Unix(0, qe.timestamp))
if err := l.QueueTimestamp.CheckValid(); err != nil {
return fmt.Errorf("got invalid queue timestamp: %w", err)
}
k := string(l.LeafIdentityHash)
if tx.dequeued[k] != nil {
// dupe, user probably called DequeueLeaves more than once.
return nil
}
ret = append(ret, &l)
qe.leaf = &l
tx.dequeued[k] = &qe
// If we've already got enough leaves, don't wrap around for any further reads.
if len(ret) >= limit {
return errBreak
}
return nil
}); err != nil && err != errBreak {
return nil, err
}
return ret, nil
}
// UpdateSequencedLeaves stores the sequence numbers assigned to the leaves,
// and integrates them into the tree.
func (tx *logTX) UpdateSequencedLeaves(ctx context.Context, leaves []*trillian.LogLeaf) error {
stx, ok := tx.stx.(*spanner.ReadWriteTransaction)
if !ok {
return ErrWrongTXType
}
// We need the latest root to know what the next sequence number to use below is.
currentSTH, err := tx.currentSTH(ctx)
if err != nil {
return err
}
for _, l := range leaves {
if got, want := l.LeafIndex, currentSTH.TreeSize+tx.numSequenced; got != want {
return fmt.Errorf("attempting to assign non-sequential leaf with sequence %d, want %d", got, want)
}
qe, ok := tx.dequeued[string(l.LeafIdentityHash)]
if !ok {
return fmt.Errorf("attempting to assign unknown merkleleafhash %v", l.MerkleLeafHash)
}
if err := l.IntegrateTimestamp.CheckValid(); err != nil {
return fmt.Errorf("got invalid integrate timestamp: %w", err)
}
iTimestamp := l.IntegrateTimestamp.AsTime()
// Add the sequence mapping...
m1, err := spanner.InsertStruct(seqDataTbl, sequencedLeafDataCols{
TreeID: tx.treeID,
SequenceNumber: l.LeafIndex,
LeafIdentityHash: l.LeafIdentityHash,
MerkleLeafHash: l.MerkleLeafHash,
IntegrateTimestampNanos: iTimestamp.UnixNano(),
})
if err != nil {
return err
}
m2 := spanner.Delete(unseqTable, spanner.Key{tx.treeID, qe.bucket, qe.timestamp, l.MerkleLeafHash})
tx.numSequenced++
if err := stx.BufferWrite([]*spanner.Mutation{m1, m2}); err != nil {
return fmt.Errorf("bufferwrite(): %v", err)
}
}
return nil
}
// leafmap is a map of LogLeaf by sequence number which knows how to populate
// itself directly from Spanner Rows.
type leafmap map[int64]*trillian.LogLeaf
// addFullRow appends the leaf data in row to the array
func (l leafmap) addFullRow(seqLeaves map[string]sequencedLeafDataCols) func(r *spanner.Row) error {
return func(r *spanner.Row) error {
var leafData leafDataCols
if err := r.ToStruct(&leafData); err != nil {
return err
}
seqLeaf, ok := seqLeaves[string(leafData.LeafIdentityHash)]
if !ok {
return fmt.Errorf("LeafIdentityHash %x not found in SequencedLeafData",
leafData.LeafIdentityHash)
}
leaf := &trillian.LogLeaf{
MerkleLeafHash: seqLeaf.MerkleLeafHash,
LeafValue: leafData.LeafValue,
ExtraData: leafData.ExtraData,
LeafIndex: seqLeaf.SequenceNumber,
LeafIdentityHash: leafData.LeafIdentityHash,
}
leaf.QueueTimestamp = timestamppb.New(time.Unix(0, leafData.QueueTimestampNanos))
if err := leaf.QueueTimestamp.CheckValid(); err != nil {
return fmt.Errorf("got invalid queue timestamp: %w", err)
}
leaf.IntegrateTimestamp = timestamppb.New(time.Unix(0, seqLeaf.IntegrateTimestampNanos))
if err := leaf.IntegrateTimestamp.CheckValid(); err != nil {
return fmt.Errorf("got invalid integrate timestamp: %w", err)
}
l[seqLeaf.SequenceNumber] = leaf
return nil
}
}
// leavesByHash is a map of []LogLeaf (keyed by value hash) which knows how to
// populate itself from Spanner Rows.
type leavesByHash map[string][]*trillian.LogLeaf
// addRow adds the contents of the Spanner Row to this map.
func (b leavesByHash) addRow(r *spanner.Row) error {
var h []byte
var v []byte
var ed []byte
var qTimestamp int64
if err := r.Columns(&h, &v, &ed, &qTimestamp); err != nil {
return err
}
queueTimestamp := timestamppb.New(time.Unix(0, qTimestamp))
if err := queueTimestamp.CheckValid(); err != nil {
return fmt.Errorf("got invalid queue timestamp: %w", err)
}
leaves, ok := b[string(h)]
if !ok {
return fmt.Errorf("inconsistency: unexpected leafValueHash %v", h)
}
for i := range leaves {
if got, want := leaves[i].LeafIdentityHash, h; !bytes.Equal(got, want) {
return fmt.Errorf("inconsistency: unexpected leafvaluehash %v, want %v", got, want)
}
leaves[i].LeafValue = v
leaves[i].ExtraData = ed
leaves[i].QueueTimestamp = queueTimestamp
}
return nil
}
// populateLeafData populates the partial LogLeaf structs held in the passed in
// map of LeafIdentityHash to []LogLeaf by reading the remaining LogLeaf data from
// Spanner.
// The value of byHash is an []LogLeaf because the underlying leaf data could
// be sequenced into multiple tree leaves if the log allows duplication.
func (tx *logTX) populateLeafData(ctx context.Context, byHash leavesByHash) error {
keySet := make([]spanner.KeySet, 0, len(byHash))
for k := range byHash {
keySet = append(keySet, spanner.Key{tx.treeID, []byte(k)})
}
cols := []string{colLeafIdentityHash, colLeafValue, colExtraData, colQueueTimestampNanos}
rows := tx.stx.Read(ctx, leafDataTbl, spanner.KeySets(keySet...), cols)
return rows.Do(byHash.addRow)
}
func validateRange(start, count, treeSize int64) error {
if count <= 0 {
return status.Errorf(codes.InvalidArgument, "invalid count %d", count)
}
if start < 0 {
return status.Errorf(codes.InvalidArgument, "invalid start %d", start)
}
if treeSize >= 0 && start >= treeSize {
return status.Errorf(codes.OutOfRange, "start index %d beyond tree size %d", start, treeSize)
}
return nil
}
// GetLeavesByRange returns the leaves corresponding to the given index range.
func (tx *logTX) GetLeavesByRange(ctx context.Context, start, count int64) ([]*trillian.LogLeaf, error) {
// We need the latest root to validate the indices are within range.
currentSTH, err := tx.currentSTH(ctx)
if err != nil {
return nil, err
}
xsize := currentSTH.TreeSize
if tx.treeType == trillian.TreeType_PREORDERED_LOG {
xsize = -1 // Allow requesting entries beyond the tree size.
}
if err := validateRange(start, count, xsize); err != nil {
return nil, err
}
xend := start + count
if tx.treeType != trillian.TreeType_PREORDERED_LOG && xend > xsize {
xend = xsize
count = xend - start
}
// TODO: replace with INNER JOIN when spannertest supports JOINs
// https://github.com/googleapis/google-cloud-go/tree/master/spanner/spannertest
stmt := spanner.NewStatement(
`SELECT
TreeID,
SequenceNumber,
LeafIdentityHash,
MerkleLeafHash,
IntegrateTimestampNanos
FROM
SequencedLeafData
WHERE
TreeID = @tree_id AND
SequenceNumber >= @start AND
SequenceNumber < @xend`)
stmt.Params["tree_id"] = tx.treeID
stmt.Params["start"] = start
stmt.Params["xend"] = xend
seqLeaves := make(map[string]sequencedLeafDataCols)
if err := tx.stx.Query(ctx, stmt).Do(func(r *spanner.Row) error {
var seqLeaf sequencedLeafDataCols
if err := r.ToStruct(&seqLeaf); err != nil {
return err
}
seqLeaves[string(seqLeaf.LeafIdentityHash)] = seqLeaf
return nil
}); err != nil {
return nil, err
}
idHashes := make([][]byte, 0, len(seqLeaves))
for _, l := range seqLeaves {
idHashes = append(idHashes, l.LeafIdentityHash)
}
stmt = spanner.NewStatement(
`SELECT
TreeID,
LeafIdentityHash,
LeafValue,
ExtraData,
QueueTimestampNanos
FROM
LeafData
WHERE
TreeID = @tree_id AND
LeafIdentityHash IN UNNEST(@id_hashes)`)
stmt.Params["tree_id"] = tx.treeID
stmt.Params["id_hashes"] = idHashes
// Results need to be returned in order [start, end), all of which
// should be available (as we restricted xend/count to TreeSize).
leaves := make(leafmap)
if err := tx.stx.Query(ctx, stmt).
Do(leaves.addFullRow(seqLeaves)); err != nil {
return nil, err
}
if got := int64(len(leaves)); got > count {
return nil, fmt.Errorf("unexpected number of leaves %d, want <= %d", got, count)
}
ret := make([]*trillian.LogLeaf, 0, count)
for i := start; i < (start + count); i++ {
l, ok := leaves[i]
if !ok {
if i < int64(currentSTH.TreeSize) {
return nil, fmt.Errorf("missing expected index %d", i)
}
break
}
ret = append(ret, l)
}
return ret, nil
}
// leafSlice is a slice of LogLeaf which knows how to populate itself from
// Spanner Rows.
type leafSlice []*trillian.LogLeaf
// addRow appends the leaf data in Row to the array.
func (l *leafSlice) addRow(r *spanner.Row) error {
var (
s int64
mh, lh []byte
)
if err := r.Columns(&s, &mh, &lh); err != nil {
return err
}
leaf := trillian.LogLeaf{
LeafIndex: s,
MerkleLeafHash: mh,
LeafIdentityHash: lh,
}
*l = append(*l, &leaf)
return nil
}
// getUsingIndex returns a slice containing the LogLeaf structs corresponding
// to the requested keys.
// The entries in key are used in constructing a primary key (treeID, keyElem)
// for the specified Spanner index.
// If bySeq is true, the returned slice will be order by LogLeaf.LeafIndex.
func (tx *logTX) getUsingIndex(ctx context.Context, idx string, keys [][]byte, bySeq bool) ([]*trillian.LogLeaf, error) {
keySet := make([]spanner.KeySet, 0, len(keys))
for _, k := range keys {
keySet = append(keySet, spanner.Key{tx.treeID, k})
}
leaves := make(leafSlice, 0, len(keys))
cols := []string{colSequenceNumber, colMerkleLeafHash, colLeafIdentityHash}
rows := tx.stx.ReadUsingIndex(ctx, seqDataTbl, idx, spanner.KeySets(keySet...), cols)
if err := rows.Do(leaves.addRow); err != nil {
return nil, err
}
byHash := make(leavesByHash)
for i := range leaves {
k := string(leaves[i].LeafIdentityHash)
byHash[k] = append(byHash[k], leaves[i])
}
// Now we can fetch & combine the actual leaf data:
if err := tx.populateLeafData(ctx, byHash); err != nil {
return nil, err
}
if bySeq {
sort.Sort(byIndex(leaves))
}
return leaves, nil
}
// GetLeavesByHash returns the leaves corresponding to the given merkle hashes.
// Any unknown hashes will simply be ignored, and the caller should inspect the
// returned leaves to determine whether this has occurred.
// TODO(al): Currently, this method does not populate the IntegrateTimestamp
//
// member of the returned leaves. We should convert this method to use SQL
// rather than denormalising IntegrateTimestampNanos into the index too.
func (tx *logTX) GetLeavesByHash(ctx context.Context, hashes [][]byte, bySeq bool) ([]*trillian.LogLeaf, error) {
return tx.getUsingIndex(ctx, seqDataByMerkleHashIdx, hashes, bySeq)
}
// QueuedEntry represents a leaf which was dequeued.
// It's used to store some extra info which is necessary for rebuilding the
// leaf's primary key when it's passed back in to UpdateSequencedLeaves.
type QueuedEntry struct {
// leaf is partially populated with the Merkle and LeafValue hashes only.
leaf *trillian.LogLeaf
bucket int64
timestamp int64
}
// LogLeaf sorting boilerplate below.
type byIndex []*trillian.LogLeaf
func (b byIndex) Len() int { return len(b) }
func (b byIndex) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b byIndex) Less(i, j int) bool { return b[i].LeafIndex < b[j].LeafIndex }
|