File: test_creation.py

package info (click to toggle)
trimesh 4.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 33,416 kB
  • sloc: python: 35,596; makefile: 96; javascript: 85; sh: 38
file content (364 lines) | stat: -rw-r--r-- 13,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
try:
    from . import generic as g
except BaseException:
    import generic as g


class CreationTest(g.unittest.TestCase):
    def setUp(self):
        self.engines = [k for k, exists in g.trimesh.creation._engines if exists]

    def test_box(self):
        box = g.trimesh.creation.box

        # should create a unit cube with origin centroid
        m = box()
        assert g.np.allclose(m.bounds, [[-0.5] * 3, [0.5] * 3])

        # check creation by passing extents
        extents = g.np.array([1.2, 1.9, 10.3])
        m = box(extents=extents)
        assert g.np.allclose(m.extents, extents)
        assert g.np.allclose(m.bounds, [-extents / 2.0, extents / 2.0])

        bounds = g.np.array([[10.0, 11.9, 1.3], [100, 121, 53.002]])
        m = box(bounds=bounds)
        assert g.np.allclose(m.bounds, bounds)

    def test_cone(self):
        c = g.trimesh.creation.cone(radius=0.5, height=1.0)
        assert c.is_volume
        assert c.body_count == 1
        assert g.np.allclose(c.extents, 1.0, atol=0.03)
        assert c.metadata["shape"] == "cone"

    def test_cylinder(self):
        # tolerance for cylinders
        atol = 0.03

        c = g.trimesh.creation.cylinder(radius=0.5, height=1.0)
        assert c.is_volume
        assert c.body_count == 1
        assert g.np.allclose(c.extents, 1.0, atol=atol)
        assert c.metadata["shape"] == "cylinder"

        # check the "use a segment" feature
        # passed height should be overridden
        radius = 0.75
        offset = 10.0
        # true bounds
        bounds = ([[0, -radius, offset - radius], [1, radius, offset + radius]],)
        # create with a height that gets overridden
        c = g.trimesh.creation.cylinder(
            radius=radius, height=200, segment=[[0, 0, offset], [1, 0, offset]]
        )
        assert c.is_volume
        assert c.body_count == 1
        # make sure segment has been applied correctly
        assert g.np.allclose(c.bounds, bounds, atol=atol)
        # try again with no height passed
        c = g.trimesh.creation.cylinder(
            radius=radius, segment=[[0, 0, offset], [1, 0, offset]]
        )
        assert c.is_volume
        assert c.body_count == 1
        # make sure segment has been applied correctly
        assert g.np.allclose(c.bounds, bounds, atol=atol)

    def test_soup(self):
        count = 100
        mesh = g.trimesh.creation.random_soup(face_count=count)
        assert len(mesh.faces) == count
        assert len(mesh.face_adjacency) == 0
        assert len(mesh.split(only_watertight=True)) == 0
        assert len(mesh.split(only_watertight=False)) == count

    def test_capsule(self):
        mesh = g.trimesh.creation.capsule(radius=1.0, height=2.0)
        assert mesh.is_volume
        assert mesh.body_count == 1
        assert g.np.allclose(mesh.extents, [2, 2, 4], atol=0.05)

    def test_spheres(self):
        # test generation of UV spheres and icospheres
        for sphere in [g.trimesh.creation.uv_sphere(), g.trimesh.creation.icosphere()]:
            assert sphere.is_volume
            assert sphere.is_convex
            assert sphere.is_watertight
            assert sphere.is_winding_consistent

            assert sphere.body_count == 1
            assert sphere.metadata["shape"] == "sphere"

            # all vertices should have radius of exactly 1.0
            radii = g.np.linalg.norm(sphere.vertices - sphere.center_mass, axis=1)
            assert g.np.allclose(radii, 1.0)

        # test additional arguments
        red_sphere = g.trimesh.creation.icosphere(face_colors=[1.0, 0, 0])
        expected = g.np.full((len(red_sphere.faces), 4), (255, 0, 0, 255))
        g.np.testing.assert_allclose(red_sphere.visual.face_colors, expected)

    def test_camera_marker(self):
        """
        Create a marker including FOV for a camera object
        """
        # camera transform (pose) is identity
        camera = g.trimesh.scene.Camera(resolution=(320, 240), fov=(60, 45))
        meshes = g.trimesh.creation.camera_marker(camera=camera, marker_height=0.04)
        assert isinstance(meshes, list)
        # all meshes should be viewable type
        for mesh in meshes:
            assert isinstance(mesh, (g.trimesh.Trimesh, g.trimesh.path.Path3D))

    def test_axis(self):
        # specify the size of the origin radius
        origin_size = 0.04
        # specify the length of the cylinders
        axis_length = 0.4

        # construct a visual axis
        axis = g.trimesh.creation.axis(origin_size=origin_size, axis_length=axis_length)

        # AABB should be origin radius + cylinder length
        assert g.np.allclose(
            origin_size + axis_length, axis.bounding_box.primitive.extents, rtol=0.01
        )

    def test_path_sweep(self):
        if len(self.engines) == 0:
            return

        # Create base polygon
        vec = g.np.array([0, 1]) * 0.2
        n_comps = 100
        angle = g.np.pi * 2.0 / n_comps
        rotmat = g.np.array(
            [[g.np.cos(angle), -g.np.sin(angle)], [g.np.sin(angle), g.np.cos(angle)]]
        )
        perim = []
        for _i in range(n_comps):
            perim.append(vec)
            vec = g.np.dot(rotmat, vec)
        poly = g.Polygon(perim)

        # --- test open sweep
        # Create 3D path
        angles = g.np.linspace(0, 8 * g.np.pi, 1000)
        x = angles / 10.0
        y = g.np.cos(angles)
        z = g.np.sin(angles)
        path = g.np.c_[x, y, z]

        # Extrude
        for engine in self.engines:
            mesh = g.trimesh.creation.sweep_polygon(poly, path, engine=engine)
            assert mesh.is_volume

        # --- test closed sweep
        # Create 3D path
        angles = g.np.linspace(0, 2 * 0.999 * g.np.pi, 1000)
        x = g.np.zeros((1000,))
        y = g.np.cos(angles)
        z = g.np.sin(angles)
        path_closed = g.np.c_[x, y, z]

        # Extrude
        for engine in self.engines:
            mesh = g.trimesh.creation.sweep_polygon(poly, path_closed, engine=engine)
            assert mesh.is_volume

    def test_simple_watertight(self):
        # create a simple polygon
        polygon = g.Polygon(((0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)))

        for engine in self.engines:
            mesh = g.trimesh.creation.extrude_polygon(
                polygon=polygon, height=1, engine=engine
            )
            assert mesh.is_volume

    def test_annulus(self):
        """
        Basic tests of annular cylinder creation
        """

        # run through transforms
        transforms = [None]
        transforms.extend(g.transforms)
        for T in transforms:
            a = g.trimesh.creation.annulus(r_min=1.0, r_max=2.0, height=1.0, transform=T)
            # mesh should be well constructed
            assert a.is_volume
            assert a.is_watertight
            assert a.is_winding_consistent
            assert a.metadata["shape"] == "annulus"

            # should be centered at origin
            assert g.np.allclose(a.center_mass, 0.0)
            # should be along Z
            axis = g.np.eye(3)
            if T is not None:
                # rotate the symmetry axis ground truth
                axis = g.trimesh.transform_points(axis, T)

            # should be along rotated Z
            assert g.np.allclose(a.symmetry_axis, axis[2]) or g.np.allclose(
                a.symmetry_axis, -axis[2]
            )

            radii = [g.np.dot(a.vertices, i) for i in axis[:2]]
            radii = g.np.linalg.norm(radii, axis=0)
            # vertices should all be at r_min or r_max
            assert g.np.logical_or(
                g.np.isclose(radii, 1.0), g.np.isclose(radii, 2.0)
            ).all()
            # all heights should be at +/- height/2.0
            assert g.np.allclose(g.np.abs(g.np.dot(a.vertices, axis[2])), 0.5)

        # do some cylinder comparison checks
        a = g.trimesh.creation.annulus(r_min=0.0, r_max=1.0, height=1.0)
        cylinder = g.trimesh.creation.cylinder(radius=1, height=1)
        # should survive a zero-inner-radius
        assert g.np.isclose(a.volume, cylinder.volume)
        assert g.np.isclose(a.area, cylinder.area)

        # bounds should be the same as a cylinder
        a = g.trimesh.creation.annulus(r_min=0.25, r_max=1.0, height=1.0)
        c = g.trimesh.creation.cylinder(radius=1, height=1)
        assert g.np.allclose(a.bounds, c.bounds)

        # segment should work the same for both
        seg = [[1, 2, 3], [4, 5, 6]]
        a = g.trimesh.creation.annulus(r_min=0.25, r_max=1.0, segment=seg)
        c = g.trimesh.creation.cylinder(radius=1, segment=seg)
        assert g.np.allclose(a.bounds, c.bounds)

    def test_triangulate(self):
        """
        Test triangulate using meshpy and triangle
        """
        # circles
        bigger = g.Point([10, 0]).buffer(1.0)
        smaller = g.Point([10, 0]).buffer(0.25)

        # circle with hole in center
        donut = bigger.difference(smaller)

        # make sure we have nonzero data
        assert bigger.area > 1.0
        # make sure difference did what we think it should
        assert g.np.isclose(donut.area, bigger.area - smaller.area)

        times = {"earcut": 0.0, "triangle": 0.0, "manifold": 0.0}
        iterations = 10
        # get a polygon to benchmark times with including interiors
        bench = [bigger, smaller, donut]
        for path in g.get_2D(1):
            bench.extend(path.polygons_full)

        bench.extend(g.get_mesh("2D/ChuteHolderPrint.DXF").polygons_full)
        bench.extend(g.get_mesh("2D/wrench.dxf").polygons_full)

        # check triangulation of both meshpy and triangle engine
        # including an example that has interiors
        for engine in self.engines:
            # make sure all our polygons triangulate reasonably
            for poly in bench:
                v, f = g.trimesh.creation.triangulate_polygon(poly, engine=engine)
                # run asserts
                check_triangulation(v, f, poly.area)
                try:
                    # do a quick benchmark per engine
                    # in general triangle appears to be 2x
                    # faster than
                    times[engine] += (
                        min(
                            g.timeit.repeat(
                                "t(p, engine=e)",
                                repeat=3,
                                number=iterations,
                                globals={
                                    "t": g.trimesh.creation.triangulate_polygon,
                                    "p": poly,
                                    "e": engine,
                                },
                            )
                        )
                        / iterations
                    )
                except BaseException:
                    g.log.error("failed to benchmark triangle", exc_info=True)
        g.log.info(f"benchmarked triangulation on {len(bench)} polygons: {times!s}")

    def test_triangulate_plumbing(self):
        # @ Check the plumbing of path triangulation

        if len(self.engines) == 0:
            return
        p = g.get_mesh("2D/ChuteHolderPrint.DXF")
        for engine in self.engines:
            v, f = p.triangulate(engine=engine)
            check_triangulation(v, f, p.area)

    def test_truncated(self, count=10):
        # create some random triangles
        tri = g.random((count, 3, 3))

        m = g.trimesh.creation.truncated_prisms(tri)
        split = m.split()
        assert m.body_count == count
        assert len(split) == count
        assert all(s.volume > 0 for s in split)

    def test_revolve(self):
        # create a cross section and revolve it to form some volumes
        cross_section = [[0, 0], [10, 0], [10, 10], [0, 10]]

        # high sections needed so volume is close to theoretical value for perfect revoulution
        mesh360 = g.trimesh.creation.revolve(cross_section, 2 * g.np.pi, sections=360)
        mesh360_volume = g.np.pi * 10**2 * 10
        assert g.np.isclose(mesh360.volume, mesh360_volume, rtol=0.1)
        assert mesh360.is_volume, "mesh360 should be a valid volume"

        mesh180 = g.trimesh.creation.revolve(
            cross_section, g.np.pi, sections=180, cap=True
        )
        assert g.np.isclose(
            mesh180.volume, mesh360.volume / 2, rtol=0.1
        ), "mesh180 should be half of mesh360 volume"
        assert mesh180.is_volume, "mesh180 should be a valid volume"


def check_triangulation(v, f, true_area):
    assert g.trimesh.util.is_shape(v, (-1, 2))
    assert v.dtype.kind == "f"
    assert g.trimesh.util.is_shape(f, (-1, 3))
    assert f.dtype.kind == "i"

    tri = g.trimesh.util.stack_3D(v)[f]
    area = g.trimesh.triangles.area(tri).sum()
    assert g.np.isclose(area, true_area, rtol=1e-7)


def test_torus():
    torus = g.trimesh.creation.torus

    major_radius = 1.0
    minor_radius = 0.2
    m = torus(major_radius=major_radius, minor_radius=minor_radius)

    extents = g.np.array(
        [
            2 * major_radius + 2 * minor_radius,
            2 * major_radius + 2 * minor_radius,
            2 * minor_radius,
        ]
    )
    assert g.np.allclose(m.extents, extents)
    assert g.np.allclose(m.bounds, [-extents / 2.0, extents / 2.0])


if __name__ == "__main__":
    g.trimesh.util.attach_to_log()
    g.unittest.main()