File: test_section.py

package info (click to toggle)
trimesh 4.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 33,416 kB
  • sloc: python: 35,596; makefile: 96; javascript: 85; sh: 38
file content (468 lines) | stat: -rw-r--r-- 18,043 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
try:
    from . import generic as g
except BaseException:
    import generic as g


class SectionTest(g.unittest.TestCase):
    def test_section(self):
        mesh = g.get_mesh("featuretype.STL")
        # this hits many edge cases
        step = 0.125
        # step through mesh
        z_levels = g.np.arange(
            start=mesh.bounds[0][2], stop=mesh.bounds[1][2] + 2 * step, step=step
        )
        # randomly order Z so first level is probably not zero
        z_levels = g.np.random.permutation(z_levels)

        # rotate around so we're not just testing XY parallel planes
        for angle in [0.0, g.np.radians(1.0), g.np.radians(11.11232)]:
            # arbitrary test rotation axis
            axis = g.trimesh.unitize([1.0, 2.0, 0.32343])
            # rotate plane around axis to test along non- parallel planes
            base = g.trimesh.transformations.rotation_matrix(angle=angle, direction=axis)
            # to return to parallel to XY plane
            base_inv = g.np.linalg.inv(base)

            # transform normal to be slightly rotated
            plane_normal = g.trimesh.transform_points(
                [[0, 0, 1.0]], base, translate=False
            )[0]

            # store Path2D and Path3D results
            sections = [None] * len(z_levels)
            sections_3D = [None] * len(z_levels)

            for index, z in enumerate(z_levels):
                # move origin into rotated frame
                plane_origin = [0, 0, z]
                plane_origin = g.trimesh.transform_points([plane_origin], base)[0]

                section = mesh.section(
                    plane_origin=plane_origin, plane_normal=plane_normal
                )

                if section is None:
                    # section will return None if the plane doesn't
                    # intersect the mesh
                    # assert z > (mesh.bounds[1][2] -
                    #            g.trimesh.constants.tol.merge)
                    continue

                # move back
                section.apply_transform(base_inv)

                # Z should be in plane frame
                assert g.np.allclose(section.vertices[:, 2], z)
                assert len(section.centroid) == 3

                planar, _to_3D = section.to_planar()
                assert planar.is_closed
                assert len(planar.polygons_full) > 0
                assert len(planar.centroid) == 2

                sections[index] = planar
                sections_3D[index] = section

            # try getting the sections as Path2D through
            # the multiplane method
            paths = mesh.section_multiplane(
                plane_origin=[0, 0, 0], plane_normal=plane_normal, heights=z_levels
            )

            # call the multiplane method directly
            lines, _faces, _T = g.trimesh.intersections.mesh_multiplane(
                mesh=mesh,
                plane_origin=[0, 0, 0],
                plane_normal=plane_normal,
                heights=z_levels,
            )

            # make sure various methods return the same results
            for index in range(len(z_levels)):
                if sections[index] is None:
                    assert len(lines[index]) == 0
                    # make sure mesh.multipath_section is the same
                    assert paths[index] is None
                    continue
                # reconstruct path from line segments
                rc = g.trimesh.load_path(lines[index])

                assert g.np.isclose(rc.area, sections[index].area)
                assert g.np.isclose(rc.area, paths[index].area)

                # send Path2D back to 3D using the transform returned by
                # section
                back_3D = paths[index].to_3D(paths[index].metadata["to_3D"])
                # move to parallel test plane
                back_3D.apply_transform(base_inv)

                # make sure all vertices have constant Z
                assert g.np.ptp(back_3D.vertices[:, 2]) < 1e-8
                assert g.np.ptp(sections_3D[index].vertices[:, 2]) < 1e-8

                # make sure reconstructed 3D section is at right height
                assert g.np.isclose(
                    back_3D.vertices[:, 2].mean(),
                    sections_3D[index].vertices[:, 2].mean(),
                )

                # make sure reconstruction is at z of frame
                assert g.np.isclose(back_3D.vertices[:, 2].mean(), z_levels[index])

    def test_multi_index(self):
        # make sure returned face indexes on a section are correct
        mesh = g.trimesh.creation.box()
        normal = g.np.array([0, 0, 1])
        # point for plane origin
        origin = mesh.center_mass
        # pick some offsets from the plane
        heights = g.np.linspace(0, 0.1, 2)
        # compute the multiple crosss sections with `section_multiplane`
        multi = mesh.section_multiplane(origin, normal, heights)
        # get the face indexes this should have hit by checking the normal
        idx = set(
            g.np.nonzero(g.np.isclose(g.np.dot(mesh.face_normals, normal), 0, atol=1e-4))[
                0
            ]
        )
        # make sure all indexes are set correctly
        assert all(set(m.metadata["face_index"] == idx) for m in multi)


class PlaneLine(g.unittest.TestCase):
    def test_planes(self):
        count = 10
        z = g.np.linspace(-1, 1, count)

        plane_origins = g.np.column_stack((g.random((count, 2)), z))
        plane_normals = g.np.tile([0, 0, -1], (count, 1))

        line_origins = g.np.tile([0, 0, 0], (count, 1))
        line_directions = g.random((count, 3))

        i, valid = g.trimesh.intersections.planes_lines(
            plane_origins=plane_origins,
            plane_normals=plane_normals,
            line_origins=line_origins,
            line_directions=line_directions,
        )
        assert valid.all()
        assert (g.np.abs(i[:, 2] - z) < g.tol.merge).all()


class SliceTest(g.unittest.TestCase):
    def test_slice(self):
        mesh = g.trimesh.creation.box()

        # Cut corner off of box and make sure the bounds and number of faces is correct
        # Tests new triangles, but not new quads or triangles contained
        # entirely
        plane_origin = mesh.bounds[1] - 0.05
        plane_normal = mesh.bounds[1]

        sliced = mesh.slice_plane(plane_origin=plane_origin, plane_normal=plane_normal)

        assert g.np.isclose(sliced.bounds[0], mesh.bounds[1] - 0.15).all()
        assert g.np.isclose(sliced.bounds[1], mesh.bounds[1]).all()
        assert len(sliced.faces) == 5

        # Cut top off of box and make sure bounds and number of faces is correct
        # Tests new quads and entirely contained triangles
        plane_origin = mesh.bounds[1] - 0.05
        plane_normal = g.np.array([0, 0, 1])

        sliced = mesh.slice_plane(plane_origin=plane_origin, plane_normal=plane_normal)

        assert g.np.isclose(
            sliced.bounds[0], mesh.bounds[0] + g.np.array([0, 0, 0.95])
        ).all()
        assert g.np.isclose(sliced.bounds[1], mesh.bounds[1]).all()
        assert len(sliced.faces) == 14

        # non- watertight more complex mesh
        bunny = g.get_mesh("bunny.ply")

        origin = bunny.bounds.mean(axis=0)
        normal = g.trimesh.unitize([1, 1, 2])

        sliced = bunny.slice_plane(plane_origin=origin, plane_normal=normal)
        assert len(sliced.faces) > 0

        # check the projections manually
        dot = g.np.dot(normal, (sliced.vertices - origin).T)
        # should be lots of stuff at the plane and nothing behind
        assert g.np.isclose(dot.min(), 0.0)

        # Cut part of top off of box with multiple planes at once
        # and make sure bounds and number of faces is correct
        plane_origins = [mesh.bounds[1] - 0.05, mesh.bounds[1] - 0.05]
        plane_normals = [g.np.array([0, 0, 1]), g.np.array([0, 1, 0])]

        sliced = mesh.slice_plane(plane_origin=plane_origins, plane_normal=plane_normals)

        assert g.np.isclose(
            sliced.bounds[0], mesh.bounds[0] + g.np.array([0, 0.95, 0.95])
        ).all()
        assert g.np.isclose(sliced.bounds[1], mesh.bounds[1]).all()
        assert len(sliced.faces) == 11

        # Try with more complicated mesh and make sure we get correct projections
        # and some faces
        origins = [
            bunny.bounds.mean(axis=0),
            bunny.bounds.mean(axis=0) + 0.01 * g.trimesh.unitize([1, 1, 2]),
        ]
        normals = [g.trimesh.unitize([1, 1, 2]), -g.trimesh.unitize([1, 1, 2])]

        sliced = bunny.slice_plane(plane_origin=origins, plane_normal=normals)
        assert len(sliced.faces) > 0

        for o, n in zip(origins, normals):
            # check the projections manually
            dot = g.np.dot(n, (sliced.vertices - o).T)
            # should be lots of stuff at the plane and nothing behind
            assert g.np.isclose(dot.min(), 0.0)

        # Test cap on more complicated watertight mesh to make sure the
        # resulting mesh is still watertight and slice is correct
        featuretype = g.get_mesh("featuretype.STL")

        origins = [
            featuretype.center_mass,
            featuretype.center_mass + 0.01 * g.trimesh.unitize([1, 0, 2]),
        ]
        normals = [g.trimesh.unitize([1, 1, 1]), g.trimesh.unitize([1, 2, 3])]

    def test_slice_onplane(self):
        m = g.get_mesh("featuretype.STL")
        # on a plane with a lot of coplanar triangles
        n = g.np.array([0, 0, 1.0])
        o = g.np.array([0, 0, 1.0])

        # slice the mesh in two pieces
        a = m.slice_plane(plane_origin=o, plane_normal=-n, cap=True)
        b = m.slice_plane(plane_origin=o, plane_normal=n, cap=True)

        # both slices should be watertiight
        assert a.is_watertight
        assert b.is_watertight
        # volume should match original
        assert g.np.isclose(m.volume, a.volume + b.volume)

    def test_slice_submesh(self):
        bunny = g.get_mesh("bunny.ply")

        # Find the faces on the body.
        neck_plane_origin = g.np.array([-0.0441905, 0.124347, 0.0235287])
        neck_plane_normal = g.np.array([0.35534835, -0.93424839, -0.03012456])

        dots = g.np.einsum(
            "i,ij->j", neck_plane_normal, (bunny.vertices - neck_plane_origin).T
        )
        signs = g.np.zeros(len(bunny.vertices), dtype=g.np.int8)
        signs[dots < -g.tol.merge] = 1
        signs[dots > g.tol.merge] = -1
        signs = signs[bunny.faces]

        signs_sum = signs.sum(axis=1, dtype=g.np.int8)
        signs_asum = g.np.abs(signs).sum(axis=1, dtype=g.np.int8)

        body_face_mask = signs_sum == -signs_asum
        body_face_index = body_face_mask.nonzero()[0]

        slicing_plane_origin = bunny.bounds.mean(axis=0)
        slicing_plane_normal = g.trimesh.unitize([1, 1, 2])

        sliced = bunny.slice_plane(
            plane_origin=slicing_plane_origin,
            plane_normal=slicing_plane_normal,
            face_index=body_face_index,
        )

        # Ideally we would assert that the triangles in `body_face_index` were
        # sliced if they are on in front of side of the slicing plane, and the
        # triangles not in `body_face_index` were preserved. This is easier to
        # verify visually.
        # sliced.show()

        assert len(sliced.faces) > 0

    def test_textured_mesh(self):
        # Create a plane mesh with UV == xy
        plane = g.trimesh.Trimesh(
            vertices=g.np.array(
                [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]
            ),
            faces=g.np.array([[0, 1, 2], [2, 3, 0]]),
        )
        plane.visual = g.trimesh.visual.TextureVisuals(
            uv=plane.vertices[:, :2], material=g.trimesh.visual.material.empty_material()
        )

        # We cut the plane and check that the new UV match the new vertices
        origin = g.np.array([0.5, 0.5, 0.0])
        normal = g.trimesh.unitize([2, 1, 2])
        sliced = plane.slice_plane(plane_origin=origin, plane_normal=normal)
        assert g.np.isclose(sliced.vertices[:, :2], sliced.visual.uv).all()

        # Test scenario when plane does not cut
        origin = g.np.array([-1.0, -1.0, 0.0])
        normal = g.trimesh.unitize([1, 1, 2])
        sliced = plane.slice_plane(plane_origin=origin, plane_normal=normal)
        assert g.np.isclose(sliced.vertices[:, :2], sliced.visual.uv).all()

        # Test cut with no new vertices
        origin = g.np.array([0.5, 0.5, 0.0])
        normal = g.trimesh.unitize([2, -2, 1])
        sliced = plane.slice_plane(plane_origin=origin, plane_normal=normal)
        assert g.np.isclose(sliced.vertices[:, :2], sliced.visual.uv).all()

    def test_cap_coplanar(self):
        # check to see if we handle capping with
        # existing coplanar faces correctly

        if not g.has_earcut:
            return

        s = g.get_mesh("cap.zip")
        mesh = next(iter(s.geometry.values()))

        plane_origin = [0, 0, 5000]
        plane_normal = [0, 0, -1]

        assert mesh.is_watertight
        newmesh = mesh.slice_plane(
            plane_origin=plane_origin, plane_normal=plane_normal, cap=True
        )
        assert newmesh.is_watertight

    def test_slice_exit(self):
        m = g.trimesh.creation.box()
        assert g.np.isclose(m.area, 6)

        # start with a slice plane at every vertex
        origins = m.vertices.copy()
        # box centered at origin so get a unit normal
        normals = g.trimesh.unitize(origins)

        # slice the tip of the box off
        origins -= normals * 0.1
        # make the first plane non-intersecting
        # to test the early exit case
        origins[0] += normals[0] * 10

        # reverse the normals to indicate positive volume
        normals *= -1

        # run the slices
        s = m.slice_plane(origins, normals)

        assert g.np.isclose(s.area, 5.685)

    def test_cap_nohit(self):
        # check to see if we handle capping with
        # non-intersecting planes well

        if not g.has_earcut:
            return

        from trimesh.transformations import random_rotation_matrix

        for _i in range(100):
            box1 = g.trimesh.primitives.Box(
                extents=[10, 20, 30], transform=random_rotation_matrix()
            )
            box2 = g.trimesh.primitives.Box(
                extents=[10, 20, 30], transform=random_rotation_matrix()
            )

            result = g.trimesh.intersections.slice_mesh_plane(
                mesh=box2,
                plane_normal=-box1.face_normals,
                plane_origin=box1.vertices[box1.faces[:, 1]],
                cap=True,
            )
            assert len(result.faces) > 0

    def test_cap(self):
        if not g.has_earcut:
            return
        mesh = g.trimesh.creation.box()

        # Cut corner off of box and make sure the bounds and number of faces is correct
        # Tests new triangles, but not new quads or triangles contained
        # entirely
        plane_origin = mesh.bounds[1] - 0.05
        plane_normal = mesh.bounds[1]

        # Same test with capping (should only add three more triangles)
        sliced_capped = mesh.slice_plane(
            plane_origin=plane_origin, plane_normal=plane_normal, cap=True
        )

        assert len(sliced_capped.faces) == 8
        assert g.np.isclose(sliced_capped.bounds[0], mesh.bounds[1] - 0.15).all()
        assert g.np.isclose(sliced_capped.bounds[1], mesh.bounds[1]).all()
        assert sliced_capped.is_watertight

        # Cut top off of box and make sure bounds and number of faces is correct
        # Tests new quads and entirely contained triangles
        plane_origin = mesh.bounds[1] - 0.05
        plane_normal = g.np.array([0, 0, 1])

        # Same test with capping (should only add six triangles)
        sliced_capped = mesh.slice_plane(
            plane_origin=plane_origin, plane_normal=plane_normal, cap=True
        )

        assert len(sliced_capped.faces) == 20
        assert g.np.isclose(
            sliced_capped.bounds[0], mesh.bounds[0] + g.np.array([0, 0, 0.95])
        ).all()
        assert g.np.isclose(sliced_capped.bounds[1], mesh.bounds[1]).all()
        assert sliced_capped.is_watertight

        # Cut part of top off of box with multiple planes at once
        # and make sure bounds and number of faces is correct
        plane_origins = [mesh.bounds[1] - 0.05, mesh.bounds[1] - 0.05]
        plane_normals = [g.np.array([0, 0, 1]), g.np.array([0, 1, 0])]

        # Test cap for multiple slices to check watertightness
        # (should add nine triangles)
        sliced_capped = mesh.slice_plane(
            plane_origin=plane_origins, plane_normal=plane_normals, cap=True
        )
        assert g.np.isclose(
            sliced_capped.bounds[0], mesh.bounds[0] + g.np.array([0, 0.95, 0.95])
        ).all()
        assert g.np.isclose(sliced_capped.bounds[1], mesh.bounds[1]).all()
        assert sliced_capped.is_watertight

        # Test cap on more complicated watertight mesh to make sure the
        # resulting mesh is still watertight and slice is correct
        featuretype = g.get_mesh("featuretype.STL")

        origins = [
            featuretype.center_mass,
            featuretype.center_mass + 0.01 * g.trimesh.unitize([1, 0, 2]),
        ]
        normals = [g.trimesh.unitize([1, 0, 1]), g.trimesh.unitize([1, 0, 0])]

        sliced_capped = featuretype.slice_plane(
            plane_origin=origins, plane_normal=normals, cap=True
        )
        assert len(sliced_capped.faces) > 0
        assert sliced_capped.is_winding_consistent

        for o, n in zip(origins, normals):
            # check the projections manually
            dot = g.np.dot(n, (sliced_capped.vertices - o).T)
            # should be lots of stuff at the plane and nothing behind
            assert g.np.isclose(dot.min(), 0.0)


if __name__ == "__main__":
    g.trimesh.util.attach_to_log()
    g.unittest.main()