1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
#!/usr/bin/env perl
use strict;
use warnings;
use Carp;
use Getopt::Long qw(:config no_ignore_case bundling pass_through);
use Cwd;
use File::Basename;
use lib ("/usr/lib/trinityrnaseq/PerlLib");
use Fasta_reader;
use Data::Dumper;
my $ROTS_B = 500;
my $ROTS_K = 5000;
my $MIN_REPS_MIN_CPM = "2,1";
my $usage = <<__EOUSAGE__;
#################################################################################################
#
# Required:
#
# --matrix|m <string> matrix of raw read counts (not normalized!)
#
# --method <string> edgeR|DESeq2|voom
# note: you should have biological replicates.
# edgeR will support having no bio replicates with
# a fixed dispersion setting.
#
# Optional:
#
# --samples_file|s <string> tab-delimited text file indicating biological replicate relationships.
# ex.
# cond_A cond_A_rep1
# cond_A cond_A_rep2
# cond_B cond_B_rep1
# cond_B cond_B_rep2
#
#
# General options:
#
# --min_reps_min_cpm <string> default: $MIN_REPS_MIN_CPM (format: 'min_reps,min_cpm')
# At least min count of replicates must have cpm values > min cpm value.
# (ie. filtMatrix = matrix[rowSums(cpm(matrix)> min_cpm) >= min_reps, ] adapted from edgeR manual)
# Note, ** if no --samples_file, default for min_reps is set = 1 **
#
# --output|o name of directory to place outputs (default: \$method.\$pid.dir)
#
# --reference_sample <string> name of a sample to which all other samples should be compared.
# (default is doing all pairwise-comparisons among samples)
#
# --contrasts <string> file (tab-delimited) containing the pairs of sample comparisons to perform.
# ex.
# cond_A cond_B
# cond_Y cond_Z
#
#
###############################################################################################
#
# ## EdgeR-related parameters
# ## (no biological replicates)
#
# --dispersion <float> edgeR dispersion value (Read edgeR manual to guide your value choice)
# http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
#
###############################################################################################
#
# Documentation and manuals for various DE methods. Please read for more advanced and more
# fine-tuned DE analysis than provided by this helper script.
#
# edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
# DESeq2: http://bioconductor.org/packages/release/bioc/html/DESeq2.html
# voom/limma: http://bioconductor.org/packages/release/bioc/html/limma.html
#
###############################################################################################
__EOUSAGE__
;
# ## ROTS parameters
# --ROTS_B <int> : number of bootstraps and permutation resampling (default: $ROTS_B)
# --ROTS_K <int> : largest top genes size (default: $ROTS_K)
#
# ROTS: http://www.btk.fi/research/research-groups/elo/software/rots/
my $matrix_file;
my $method;
my $samples_file;
my $help_flag;
my $output_dir;
my $dispersion; # I've used 0.1 myself - but read the manual to guide your choice.
my $contrasts_file;
my $reference_sample;
my $make_tar_gz_file = 0;
&GetOptions ( 'h' => \$help_flag,
'matrix|m=s' => \$matrix_file,
'method=s' => \$method,
'samples_file|s=s' => \$samples_file,
'output|o=s' => \$output_dir,
'min_reps_min_cpm=s' => \$MIN_REPS_MIN_CPM,
'dispersion=f' => \$dispersion,
'reference_sample=s' => \$reference_sample,
'contrasts=s' => \$contrasts_file,
'tar_gz_outdir' => \$make_tar_gz_file,
'ROTS_B=i' => \$ROTS_B,
'ROTS_K=i' => \$ROTS_K,
);
if ($help_flag) {
die $usage;
}
if (@ARGV) {
die "Error, don't understand options: @ARGV, please check spelling matches usage info.";
}
unless ($matrix_file
&& $method
) {
die $usage;
}
if ($matrix_file =~ /fpkm|tpm/i) {
die "Error, be sure you're using a matrix file that corresponds to raw counts, and not FPKM values.\n"
. "If this is correct, then please rename your file, and remove fpkm or tpm from the name.\n\n";
}
unless ($method =~ /^(edgeR|DESeq2|voom|ROTS|GLM)$/) {
die "Error, do not recognize --method [$method]";
}
my ($MIN_REPS, $MIN_CPM) = split(/,/, $MIN_REPS_MIN_CPM);
if ($samples_file) {
unless ($MIN_REPS > 0 && $MIN_CPM > 0) {
die "Error, --min_reps_min_cpm $MIN_REPS_MIN_CPM must include values > 0 in comma-delimited format. ex. '2,1' ";
}
}
else {
print STDERR "-note, no biological replicates identified, so setting min reps = $MIN_REPS.\n";
$MIN_REPS = 1;
}
main: {
my $workdir = cwd();
my %sample_name_to_column = &get_sample_name_to_column_index($matrix_file);
my %samples;
if ($samples_file) {
unless ($samples_file =~ /^\//) {
$samples_file = cwd() . "/$samples_file";
}
%samples = &parse_sample_info($samples_file);
}
else {
# no replicates, so assign each sample to itself as a single replicate
foreach my $sample_name (keys %sample_name_to_column) {
$samples{$sample_name} = [$sample_name];
}
}
print Dumper(\%samples);
if ($matrix_file !~ /^\//) {
## make full path
$matrix_file = cwd() . "/$matrix_file";
}
unless ($output_dir) {
$output_dir = "$method.$$.dir";
}
unless (-d $output_dir) {
mkdir($output_dir) or die "Error, cannot mkdir $output_dir";
}
chdir $output_dir or die "Error, cannot cd to $output_dir";
my @sample_names = keys %samples;
if ($method eq "GLM") {
unless ($samples_file) {
die "Error, need samples file for GLM";
}
## samples file here requires a different format:
# replicate (tab) attrA [(tab) attrB, ...]
&run_GLM($matrix_file, \%samples, \%sample_name_to_column);
}
else {
# edgeR or DESeq pairwise comparison between samples:
my @DE_contrasts;
if ($reference_sample) {
my @other_samples = grep { $_ ne $reference_sample} @sample_names;
unless (@other_samples) {
die "Error, couldn't extract non-reference samples from list: @sample_names";
}
foreach my $other_sample (@other_samples) {
push (@DE_contrasts, [$reference_sample, $other_sample]);
}
}
elsif ($contrasts_file) {
unless ($contrasts_file =~ /^\//) {
$contrasts_file = "$workdir/$contrasts_file";
}
open (my $fh, $contrasts_file) or die "Error, cannot open file $contrasts_file";
while (<$fh>) {
chomp;
unless (/\w/) { next; }
if (/^\#/) { next; }
my ($sampleA, $sampleB) = split(/\s+/);
unless ($sampleA && $sampleB) {
die "Error, didn't read a pair of tab-delimited samples from $contrasts_file, line: $_";
}
push (@DE_contrasts, [$sampleA, $sampleB]);
}
close $fh;
}
else {
## performing all pairwise comparisons:
@sample_names = sort @sample_names;
for (my $i = 0; $i < $#sample_names; $i++) {
for (my $j = $i + 1; $j <= $#sample_names; $j++) {
push (@DE_contrasts, [$sample_names[$i], $sample_names[$j]]);
}
}
}
print STDERR "Contrasts to perform are: " . Dumper(\@DE_contrasts);
foreach my $DE_contrast (@DE_contrasts) {
my ($sample_a, $sample_b) = @$DE_contrast;
if ($method eq "edgeR") {
&run_edgeR_sample_pair($matrix_file, \%samples, \%sample_name_to_column, $sample_a, $sample_b);
}
elsif ($method eq "DESeq2") {
&run_DESeq2_sample_pair($matrix_file, \%samples, \%sample_name_to_column, $sample_a, $sample_b);
}
elsif ($method eq 'voom') {
&run_limma_voom_sample_pair($matrix_file, \%samples, \%sample_name_to_column, $sample_a, $sample_b);
}
elsif ($method eq 'ROTS') {
&run_ROTS_sample_pair($matrix_file, \%samples, \%sample_name_to_column, $sample_a, $sample_b);
}
}
}
if ($make_tar_gz_file) {
chdir $workdir or die "Error, cannot cd to $workdir";
my $cmd = "tar -zcvf $output_dir.tar.gz $output_dir";
&process_cmd($cmd);
}
exit(0);
}
####
sub parse_sample_info {
my ($sample_file) = @_;
my %samples;
open (my $fh, $sample_file) or die "Error, cannot locate samples file: $sample_file";
while (<$fh>) {
unless (/\w/) { next; }
if (/^\#/) { next; } # allow comments
chomp;
s/^\s+//; # trim any leading ws
my @x = split(/\s+/); # now ws instead of just tabs
if (scalar @x < 2) { next; }
my ($sample_name, $replicate_name, @rest) = @x;
#$sample_name =~ s/^\s|\s+$//g;
#$replicate_name =~ s/^\s|\s+$//g;
push (@{$samples{$sample_name}}, $replicate_name);
}
close $fh;
return(%samples);
}
####
sub get_sample_name_to_column_index {
my ($matrix_file) = @_;
my %column_index;
open (my $fh, $matrix_file) or die "Error, cannot open file $matrix_file";
my $header_line = <$fh>;
$header_line =~ s/^\#//; # remove comment field.
$header_line =~ s/^\s+|\s+$//g;
my @samples = split(/\t/, $header_line);
{ # check for disconnect between header line and data lines
my $next_line = <$fh>;
my @x = split(/\t/, $next_line);
print STDERR "Got " . scalar(@samples) . " samples, and got: " . scalar(@x) . " data fields.\n";
print STDERR "Header: $header_line\nNext: $next_line\n";
if (scalar(@x) == scalar(@samples)) {
# problem... shift headers over, no need for gene column heading
shift @samples;
print STDERR "-shifting sample indices over.\n";
}
}
close $fh;
my $counter = 0;
foreach my $sample (@samples) {
$counter++;
$sample =~ s/\.(isoforms|genes)\.results$//;
$column_index{$sample} = $counter;
}
use Data::Dumper;
print STDERR Dumper(\%column_index);
return(%column_index);
}
####
sub run_edgeR_sample_pair {
my ($matrix_file, $samples_href, $sample_name_to_column_index_href, $sample_A, $sample_B) = @_;
my $output_prefix = basename($matrix_file) . "." . join("_vs_", ($sample_A, $sample_B));
my $Rscript_name = "$output_prefix.$sample_A.vs.$sample_B.EdgeR.Rscript";
my @reps_A = @{$samples_href->{$sample_A}};
my @reps_B = @{$samples_href->{$sample_B}};
my $num_rep_A = scalar(@reps_A);
my $num_rep_B = scalar(@reps_B);
my @rep_column_indices;
foreach my $rep_name (@reps_A, @reps_B) {
my $column_index = $sample_name_to_column_index_href->{$rep_name} or die "Error, cannot determine column index for replicate name [$rep_name]" . Dumper($sample_name_to_column_index_href);
push (@rep_column_indices, $column_index);
}
## write R-script to run edgeR
open (my $ofh, ">$Rscript_name") or die "Error, cannot write to $Rscript_name";
print $ofh "if (! require(edgeR)) {\n";
print $ofh " source(\"https://bioconductor.org/biocLite.R\")\n";
print $ofh " biocLite(\"edgeR\")\n";
print $ofh " library(edgeR)\n";
print $ofh "}\n\n";
print $ofh "data = read.table(\"$matrix_file\", header=T, row.names=1, com='')\n";
print $ofh "col_ordering = c(" . join(",", @rep_column_indices) . ")\n";
print $ofh "rnaseqMatrix = data[,col_ordering]\n";
print $ofh "rnaseqMatrix = round(rnaseqMatrix)\n";
print $ofh "rnaseqMatrix = rnaseqMatrix[rowSums(cpm(rnaseqMatrix) > $MIN_CPM) >= $MIN_REPS,]\n";
print $ofh "conditions = factor(c(rep(\"$sample_A\", $num_rep_A), rep(\"$sample_B\", $num_rep_B)))\n";
print $ofh "\n";
print $ofh "exp_study = DGEList(counts=rnaseqMatrix, group=conditions)\n";
print $ofh "exp_study = calcNormFactors(exp_study)\n";
if ($num_rep_A > 1 && $num_rep_B > 1) {
#print $ofh "exp_study = estimateCommonDisp(exp_study)\n";
#print $ofh "exp_study = estimateTagwiseDisp(exp_study)\n";
print $ofh "exp_study = estimateDisp(exp_study)\n"; # new recommended way
print $ofh "et = exactTest(exp_study, pair=c(\"$sample_A\", \"$sample_B\"))\n";
}
elsif (!$dispersion) {
die "Error, cannot calculate dispersions due to lack of replicates. Specify a dispersion parameter --dispersion <float>. See help for details\n";
}
else {
unless (defined $dispersion) {
confess "Error, must set --dispersion <float> when using edgeR w/o bio replicates";
}
print $ofh "et = exactTest(exp_study, pair=c(\"$sample_A\", \"$sample_B\"), dispersion=$dispersion)\n";
}
print $ofh "tTags = topTags(et,n=NULL)\n";
print $ofh "result_table = tTags\$table\n";
print $ofh "result_table = data.frame(sampleA=\"$sample_A\", sampleB=\"$sample_B\", result_table)\n";
## reset logfc so it's A/B instead of B/A to be consistent with DESeq2
print $ofh "result_table\$logFC = -1 * result_table\$logFC\n";
print $ofh "write.table(result_table, file=\'$output_prefix.edgeR.DE_results\', sep='\t', quote=F, row.names=T)\n";
print $ofh "write.table(rnaseqMatrix, file=\'$output_prefix.edgeR.count_matrix\', sep='\t', quote=F, row.names=T)\n";
## generate MA and Volcano plots
print $ofh "source(\"/usr/lib/trinityrnaseq/Analysis/DifferentialExpression/R/rnaseq_plot_funcs.R\")\n";
print $ofh "pdf(\"$output_prefix.edgeR.DE_results.MA_n_Volcano.pdf\")\n";
print $ofh "plot_MA_and_Volcano(rownames(result_table), result_table\$logCPM, result_table\$logFC, result_table\$FDR)\n";
print $ofh "dev.off()\n";
close $ofh;
## Run R-script
#my $cmd = "R --no-save --no-restore --no-site-file --no-init-file -q < $Rscript_name";
my $cmd = "Rscript $Rscript_name";
eval {
&process_cmd($cmd);
};
if ($@) {
print STDERR "$@\n\n";
print STDERR "\n\nWARNING: This EdgeR comparison failed...\n\n";
## if this is due to data paucity, such as in small sample data sets, then ignore for now.
}
return;
}
sub run_DESeq2_sample_pair {
my ($matrix_file, $samples_href, $sample_name_to_column_index_href, $sample_A, $sample_B) = @_;
my $output_prefix = basename($matrix_file) . "." . join("_vs_", ($sample_A, $sample_B));
my $Rscript_name = "$output_prefix.DESeq2.Rscript";
my @reps_A = @{$samples_href->{$sample_A}};
my @reps_B = @{$samples_href->{$sample_B}};
my $num_rep_A = scalar(@reps_A);
my $num_rep_B = scalar(@reps_B);
if ($num_rep_A < 2 || $num_rep_B < 2) {
print STDERR "DESeq2 only supported here with biological replicates for each condition. Skipping: $sample_A vs. $sample_B *** \n\n";
return;
}
my @rep_column_indices;
foreach my $rep_name (@reps_A, @reps_B) {
my $column_index = $sample_name_to_column_index_href->{$rep_name} or die "Error, cannot determine column index for replicate name [$rep_name]" . Dumper($sample_name_to_column_index_href);
push (@rep_column_indices, $column_index);
}
## write R-script to run DESeq
open (my $ofh, ">$Rscript_name") or die "Error, cannot write to $Rscript_name";
print $ofh "if (! require(edgeR)) {\n";
print $ofh " source(\"https://bioconductor.org/biocLite.R\")\n";
print $ofh " biocLite(\"edgeR\")\n";
print $ofh " library(edgeR)\n";
print $ofh "}\n\n";
print $ofh "if (! require(DESeq2)) {\n";
print $ofh " source(\"https://bioconductor.org/biocLite.R\")\n";
print $ofh " biocLite(\"DESeq2\")\n";
print $ofh " library(DESeq2)\n";
print $ofh "}\n\n";
print $ofh "data = read.table(\"$matrix_file\", header=T, row.names=1, com='')\n";
print $ofh "col_ordering = c(" . join(",", @rep_column_indices) . ")\n";
print $ofh "rnaseqMatrix = data[,col_ordering]\n";
print $ofh "rnaseqMatrix = round(rnaseqMatrix)\n";
print $ofh "rnaseqMatrix = rnaseqMatrix[rowSums(cpm(rnaseqMatrix) > $MIN_CPM) >= $MIN_REPS,]\n";
print $ofh "conditions = data.frame(conditions=factor(c(rep(\"$sample_A\", $num_rep_A), rep(\"$sample_B\", $num_rep_B))))\n";
print $ofh "rownames(conditions) = colnames(rnaseqMatrix)\n";
print $ofh "ddsFullCountTable <- DESeqDataSetFromMatrix(\n"
. " countData = rnaseqMatrix,\n"
. " colData = conditions,\n"
. " design = ~ conditions)\n";
print $ofh "dds = DESeq(ddsFullCountTable)\n";
print $ofh "contrast=c(\"conditions\",\"$sample_A\",\"$sample_B\")\n";
print $ofh "res = results(dds, contrast)\n";
# adj from: Carsten Kuenne, thx!
##recreates baseMeanA and baseMeanB columns that are not created by default DESeq2 anymore
print $ofh "baseMeanA <- rowMeans(counts(dds, normalized=TRUE)[,colData(dds)\$conditions == \"$sample_A\"])\n";
print $ofh "baseMeanB <- rowMeans(counts(dds, normalized=TRUE)[,colData(dds)\$conditions == \"$sample_B\"])\n";
print $ofh "res = cbind(baseMeanA, baseMeanB, as.data.frame(res))\n";
##adds an “id” column headline for column 0
print $ofh "res = cbind(sampleA=\"$sample_A\", sampleB=\"$sample_B\", as.data.frame(res))\n";
print $ofh "res\$padj[is.na(res\$padj)] <- 1\n"; # Carsten Kuenne
print $ofh "res = as.data.frame(res[order(res\$pvalue),])\n"; # rank by pvalue
## output results
print $ofh "write.table(res, file=\'$output_prefix.DESeq2.DE_results\', sep='\t', quote=FALSE)\n";
print $ofh "write.table(rnaseqMatrix, file=\'$output_prefix.DESeq2.count_matrix\', sep='\t', quote=FALSE)\n";
## generate MA and Volcano plots
print $ofh "source(\"/usr/lib/trinityrnaseq/Analysis/DifferentialExpression/R/rnaseq_plot_funcs.R\")\n";
print $ofh "pdf(\"$output_prefix.DESeq2.DE_results.MA_n_Volcano.pdf\")\n";
print $ofh "plot_MA_and_Volcano(rownames(res), log2(res\$baseMean+1), res\$log2FoldChange, res\$padj)\n";
print $ofh "dev.off()\n";
close $ofh;
## Run R-script
#my $cmd = "R --no-save --no-restore --no-site-file --no-init-file -q < $Rscript_name";
my $cmd = "Rscript $Rscript_name";
&process_cmd($cmd);
return;
}
####
sub run_limma_voom_sample_pair {
my ($matrix_file, $samples_href, $sample_name_to_column_index_href, $sample_A, $sample_B) = @_;
my $output_prefix = basename($matrix_file) . "." . join("_vs_", ($sample_A, $sample_B));
my $Rscript_name = "$output_prefix.$sample_A.vs.$sample_B.voom.Rscript";
my @reps_A = @{$samples_href->{$sample_A}};
my @reps_B = @{$samples_href->{$sample_B}};
my $num_rep_A = scalar(@reps_A);
my $num_rep_B = scalar(@reps_B);
unless ($num_rep_A > 1 && $num_rep_B > 1) {
die "Error, need multiple biological replicates for each sample in order to run voom";
}
my @rep_column_indices;
foreach my $rep_name (@reps_A, @reps_B) {
my $column_index = $sample_name_to_column_index_href->{$rep_name} or die "Error, cannot determine column index for replicate name [$rep_name]" . Dumper($sample_name_to_column_index_href);
push (@rep_column_indices, $column_index);
}
## write R-script to run edgeR
open (my $ofh, ">$Rscript_name") or die "Error, cannot write to $Rscript_name";
print $ofh "library(edgeR)\n";
print $ofh "library(limma)\n";
print $ofh "\n";
print $ofh "data = read.table(\"$matrix_file\", header=T, row.names=1, com='')\n";
print $ofh "col_ordering = c(" . join(",", @rep_column_indices) . ")\n";
print $ofh "rnaseqMatrix = data[,col_ordering]\n";
print $ofh "rnaseqMatrix = round(rnaseqMatrix)\n";
print $ofh "rnaseqMatrix = rnaseqMatrix[rowSums(cpm(rnaseqMatrix) > $MIN_CPM) >= $MIN_REPS,]\n";
print $ofh "conditions = factor(c(rep(\"$sample_A\", $num_rep_A), rep(\"$sample_B\", $num_rep_B)))\n";
print $ofh "\n";
print $ofh "design = model.matrix(~conditions)\n";
print $ofh "## TMM normalize data\n";
print $ofh "lib_sizes = colSums(rnaseqMatrix)\n";
print $ofh "tmm_norm_factors = calcNormFactors(rnaseqMatrix, method='TMM')\n";
print $ofh "x = DGEList(counts=rnaseqMatrix)\n";
print $ofh "# voom transformation\n";
print $ofh "y = voom(x, design, lib.size=lib_sizes*tmm_norm_factors, plot=F)\n";
print $ofh "fit = eBayes(lmFit(y,design))\n";
print $ofh "tTags = topTable(fit,coef=2,number=Inf)\n";
print $ofh "# output results, including average expression val for each feature\n";
print $ofh "c = cpm(x)\n";
print $ofh "m = apply(c, 1, mean)\n";
print $ofh "tTags\$logFC = -1 * tTags\$logFC # make A/B instead of B/A\n";
print $ofh "tTags2 = cbind(tTags, logCPM=log2(m[rownames(tTags)]))\n";
print $ofh "DE_matrix = data.frame(sampleA=\"$sample_A\", sampleB=\"$sample_B\", logFC=tTags\$logFC, logCPM=tTags2\$logCPM, PValue=tTags\$'P.Value', FDR=tTags\$'adj.P.Val')\n";
print $ofh "rownames(DE_matrix) = rownames(tTags)\n";
print $ofh "write.table(DE_matrix, file=\'$output_prefix.voom.DE_results\', sep='\t', quote=F, row.names=T)\n";
print $ofh "write.table(rnaseqMatrix, file=\'$output_prefix.voom.count_matrix\', sep='\t', quote=F, row.names=T)\n";
## generate MA and Volcano plots
print $ofh "# MA and volcano plots\n";
print $ofh "source(\"/usr/lib/trinityrnaseq/Analysis/DifferentialExpression/R/rnaseq_plot_funcs.R\")\n";
print $ofh "pdf(\"$output_prefix.voom.DE_results.MA_n_Volcano.pdf\")\n";
print $ofh "plot_MA_and_Volcano(rownames(tTags2), tTags2\$logCPM, tTags\$logFC, tTags\$'adj.P.Val')\n";
print $ofh "dev.off()\n";
close $ofh;
## Run R-script
#my $cmd = "R --no-save --no-restore --no-site-file --no-init-file -q < $Rscript_name";
my $cmd = "Rscript $Rscript_name";
eval {
&process_cmd($cmd);
};
if ($@) {
print STDERR "$@\n\n";
print STDERR "\n\nWARNING: This voom comparison failed...\n\n";
## if this is due to data paucity, such as in small sample data sets, then ignore for now.
}
return;
}
####
sub run_ROTS_sample_pair {
my ($matrix_file, $samples_href, $sample_name_to_column_index_href, $sample_A, $sample_B) = @_;
my $output_prefix = basename($matrix_file) . "." . join("_vs_", ($sample_A, $sample_B));
my $Rscript_name = "$output_prefix.$sample_A.vs.$sample_B.ROTS.Rscript";
my @reps_A = @{$samples_href->{$sample_A}};
my @reps_B = @{$samples_href->{$sample_B}};
my $num_rep_A = scalar(@reps_A);
my $num_rep_B = scalar(@reps_B);
unless ($num_rep_A > 1 && $num_rep_B > 1) {
die "Error, need multiple biological replicates for each sample in order to run ROTS";
}
my @rep_column_indices;
foreach my $rep_name (@reps_A, @reps_B) {
my $column_index = $sample_name_to_column_index_href->{$rep_name} or die "Error, cannot determine column index for replicate name [$rep_name]" . Dumper($sample_name_to_column_index_href);
push (@rep_column_indices, $column_index);
}
## write R-script to run DESeq2
open (my $ofh, ">$Rscript_name") or die "Error, cannot write to $Rscript_name";
print $ofh "library(edgeR)\n";
print $ofh "library(limma)\n";
print $ofh "library(ROTS)\n";
print $ofh "\n";
print $ofh "data = read.table(\"$matrix_file\", header=T, row.names=1, com='')\n";
print $ofh "col_ordering = c(" . join(",", @rep_column_indices) . ")\n";
print $ofh "rnaseqMatrix = data[,col_ordering]\n";
print $ofh "rnaseqMatrix = round(rnaseqMatrix)\n";
print $ofh "rnaseqMatrix = rnaseqMatrix[rowSums(cpm(rnaseqMatrix) > $MIN_CPM) >= $MIN_REPS,]\n";
print $ofh "conditions = factor(c(rep(\"$sample_A\", $num_rep_A), rep(\"$sample_B\", $num_rep_B)))\n";
print $ofh "\n";
print $ofh "design = model.matrix(~conditions)\n";
print $ofh "## TMM normalize data\n";
print $ofh "lib_sizes = colSums(rnaseqMatrix)\n";
print $ofh "tmm_norm_factors = calcNormFactors(rnaseqMatrix, method='TMM')\n";
print $ofh "x = DGEList(counts=rnaseqMatrix)\n";
print $ofh "# voom transformation and ROTS (code derived from ROTS paper supp R code)\n";
print $ofh "voom.data = voom(x, design, lib.size=lib_sizes*tmm_norm_factors, plot=F)\n";
print $ofh "input_voom = voom.data\$E\n";
print $ofh "# run ROTS for DE analysis\n";
print $ofh "res_voom <- ROTS(data=input_voom,groups=as.numeric(conditions),B=$ROTS_B, K=$ROTS_K)\n";
print $ofh "results = summary(res_voom, fdr=0.1)\n";
print $ofh "# add logFC and logCPM to result table.\n";
print $ofh "c = cpm(x)\n";
print $ofh "m = apply(c, 1, mean)\n";
print $ofh "sampleA_cpm_matrix = c[,conditions \%in% \"$sample_A\"]\n";
print $ofh "mean_sampleA_cpm = apply(sampleA_cpm_matrix, 1, mean)\n";
print $ofh "sampleB_cpm_matrix = c[,conditions \%in% \"$sample_B\"]\n";
print $ofh "mean_sampleB_cpm = apply(sampleB_cpm_matrix, 1, mean)\n";
print $ofh "pseudocount_cpm = 1\n";
print $ofh "FC = (mean_sampleA_cpm + pseudocount_cpm) / (mean_sampleB_cpm + pseudocount_cpm)\n";
print $ofh "logFC = log2(FC)\n";
print $ofh "results = summary(res_voom, fdr=0.1)\n";
print $ofh "feature_order = rownames(results)\n";
print $ofh "final_table = data.frame(sampleA=\"$sample_A\", sampleB=\"$sample_B\", logCPM=log2(m+1)[feature_order], CPM_A=mean_sampleA_cpm[feature_order], CPM_B=mean_sampleB_cpm[feature_order], logFC=logFC[feature_order], results)\n";
print $ofh "write.table(final_table, file=\"$output_prefix.ROTS.DE_results\", quote=F, sep='\t')\n";
print $ofh "write.table(rnaseqMatrix, file=\"$output_prefix.ROTS.count_matrix\", quote=F, sep='\t')\n";
## generate MA and Volcano plots
print $ofh "# MA and volcano plots\n";
print $ofh "source(\"/usr/lib/trinityrnaseq/Analysis/DifferentialExpression/R/rnaseq_plot_funcs.R\")\n";
print $ofh "pdf(\"$output_prefix.voom.DE_results.MA_n_Volcano.pdf\")\n";
print $ofh "plot_MA_and_Volcano(rownames(final_table), final_table\$logCPM, final_table\$logFC, final_table\$FDR)\n";
print $ofh "dev.off()\n";
close $ofh;
## Run R-script
#my $cmd = "R --no-save --no-restore --no-site-file --no-init-file -q < $Rscript_name";
my $cmd = "Rscript $Rscript_name";
eval {
&process_cmd($cmd);
};
if ($@) {
print STDERR "$@\n\n";
print STDERR "\n\nWARNING: This ROTS comparison failed...\n\n";
## if this is due to data paucity, such as in small sample data sets, then ignore for now.
}
return;
}
####
sub process_cmd {
my ($cmd) = @_;
print "CMD: $cmd\n";
my $ret = system($cmd);
if ($ret) {
die "Error, cmd: $cmd died with ret ($ret) ";
}
return;
}
####
sub run_GLM {
my ($matrix_file, $samples_href, $sample_name_to_column_index_href) = @_;
my $output_prefix = basename($matrix_file);
my $Rscript_name = "$output_prefix.GLM.Rscript";
## write R-script to run edgeR
open (my $ofh, ">$Rscript_name") or die "Error, cannot write to $Rscript_name";
print $ofh "library(edgeR)\n";
print $ofh "\n";
print $ofh "design_matrix = read.table(\"$samples_file\", header=T, row.names=1)\n";
print $ofh "groups = factor(apply(design_matrix, 1, paste, collapse='.'))\n";
print $ofh "design_matrix = cbind(design_matrix, groups=groups)\n";
print $ofh "data = read.table(\"$matrix_file\", header=T, row.names=1, com='')\n";
print $ofh "rnaseqMatrix = round(data)\n";
print $ofh "rnaseqMatrix = rnaseqMatrix[rowSums(cpm(rnaseqMatrix) > $MIN_CPM) >= $MIN_REPS,]\n";
print $ofh "design = model.matrix(~0+groups)\n";
print $ofh "colnames(design) = levels(groups)\n";
print $ofh "rownames(design) = rownames(design_matrix)\n";
print $ofh "rnaseqMatrix = rnaseqMatrix[,rownames(design)] # ensure properly ordered according to design\n";
print $ofh "exp_study = DGEList(counts=rnaseqMatrix, group=groups)\n";
print $ofh "exp_study = estimateGLMCommonDisp(exp_study,design)\n";
print $ofh "exp_study = estimateGLMTrendedDisp(exp_study, design)\n";
print $ofh "exp_study = estimateGLMTagwiseDisp(exp_study, design)\n";
print $ofh "fit = glmFit(exp_study, design)\n";
print $ofh "## define your contrasts:\n";
print $ofh "levels(groups) # examine the factor combinations\n";
print $ofh "# contrast = makeContrasts((wt.T15-wt.T0)-(zcf15.T15-zcf15.T0), levels=design)\n";
print $ofh "# lrt = glmLRT(fit, contrast=contrast)\n";
print $ofh "# topTags(lrt, n=100)\n";
close $ofh;
return;
}
|