1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
#!/usr/bin/python3
# encoding: utf-8
from __future__ import (absolute_import, division,
print_function, unicode_literals)
import os, sys, re
import logging
import argparse
import collections
import numpy
import time
import TNode
import TGraph
logger = logging.getLogger(__name__)
class Node_alignment:
"""
Object has two members:
transcript_names = [ transA,
transB,
transC,
...
]
aligned_nodes = [ [transA_node_1, transA_node_2, ... ],
[transB_node_1, transB_node_2, ... ],
[ None, transC_node_1, ... ],
]
Note, can have None at node positions to include gaps.
"""
GAP = None
def __init__(self, gene_id, transcript_name_list, node_obj_matrix):
self.gene_id = gene_id
self.transcript_names = transcript_name_list
self.aligned_nodes = node_obj_matrix
def get_gene_id(self):
return self.gene_id
def set_gene_id(self, gene_id):
self.gene_id = gene_id
def get_transcript_names(self):
# accessor
return self.transcript_names
def get_aligned_nodes(self):
# accessor
return self.aligned_nodes
@staticmethod
def get_single_seq_node_alignment(path_obj):
"""
Factory method:
constructs a Node_alignment object from a Node_path object
mostly just reshaping the info for use with the multiple alignment methods.
"""
node_list = list()
for node_obj in path_obj.get_path():
node_list.append(node_obj)
transcript_name = path_obj.get_transcript_name()
self = Node_alignment(transcript_name, [transcript_name], [node_list])
return self
@staticmethod
def compute_number_common_nodes(align_A, align_B):
"""
given to Node_alignment objects, counts the number of shared nodes
"""
node_set_a = Node_alignment.get_node_set(align_A)
node_set_b = Node_alignment.get_node_set(align_B)
node_set_a = Node_alignment.get_node_loc_ids(node_set_a)
node_set_b = Node_alignment.get_node_loc_ids(node_set_b)
common_nodes = set.intersection(node_set_a, node_set_b)
return common_nodes
@staticmethod
def get_node_loc_ids(node_set):
"""
private static method
gets the list of loc_id among all nodes in the set
"""
loc_ids_set = set()
for node in node_set:
loc_id = node.get_loc_id()
loc_ids_set.add(loc_id)
return loc_ids_set
@staticmethod
def get_node_set(align_obj):
"""
extracts a list of unique Node objects from the Node_alignment object
"""
num_trans = len(align_obj)
alignment_width = align_obj.width()
node_set = set()
for align_num in range(0,num_trans):
for align_pos in range(0,alignment_width):
node_obj = align_obj.aligned_nodes[ align_num ][ align_pos ]
if node_obj is not None:
node_set.add(node_obj)
return node_set
def get_node_set_at_column_pos(self, col_pos):
"""
At a given column of the Node_alignment, extracts the list of unique nodes
"""
# FIXME: since we're not dealing with mismatched nodes, there really should only be one node here
# that's shared among the different alignments
# Need refactoring across the next few methods as well for the same reason.
node_objs = set()
for i in range(0, len(self)):
node_obj = self.aligned_nodes[ i ][ col_pos ]
if node_obj is not None:
node_objs.add(node_obj)
return node_objs
def get_representative_column_node(self, col_pos):
node_list = list(self.get_node_set_at_column_pos(col_pos))
return node_list[ 0 ]
def get_node_LIST_at_column_pos(self, col_pos):
node_objs = list()
for i in range(0, len(self)):
node_obj = self.aligned_nodes[ i ][ col_pos ]
node_objs.append(node_obj)
return node_objs
def get_node_occupancy_at_column_pos(self, col_pos):
node_list = self.get_node_LIST_at_column_pos(col_pos)
occupancy_list = list()
for node in node_list:
if node is None:
occupancy_list.append(False)
else:
occupancy_list.append(True)
return occupancy_list
def append_node_to_each_entry(self, node_obj):
for i in range(0, len(self)):
self.aligned_nodes[ i ].append(node_obj)
def append_node_according_to_occupancy_pattern(self, node_obj, occupancy_pattern):
for i in range(0, len(self)):
if occupancy_pattern[i] is True:
self.aligned_nodes[ i ].append(node_obj)
else:
self.aligned_nodes[ i ].append(None)
def add_column(self, column_node_list):
num_alignments = len(self)
if len(column_node_list) != num_alignments:
raise RuntimeError("Error, column size differs from num_alignments")
for i in range(0,num_alignments):
self.aligned_nodes[ i ].append(column_node_list[ i ])
def __len__(self):
"""
number of transcripts represented in the alignment
"""
return(len(self.transcript_names))
def width (self):
"""
width of the alignment (number of columns)
"""
return(len(self.aligned_nodes[0]))
def __repr__(self):
num_transcripts = len(self.transcript_names)
ret_text = "\n# Alignment obj contains: {} transcripts: {}\n\n".format(num_transcripts, ",".join(self.transcript_names))
align_width = self.width()
NODES_PER_LINE = 10
# each alignment block
for i in range(0, align_width, NODES_PER_LINE):
# report alignment for each entry
for j in range(0,num_transcripts):
transcript_name = self.transcript_names[ j ]
aligned_nodes_entry = self.aligned_nodes[ j ]
ret_text += "{}".format(transcript_name)
for x in range(i, i+NODES_PER_LINE):
if x >= align_width:
break
ret_text += "\t{}".format(aligned_nodes_entry[ x ])
ret_text += "\n" # end of current line
ret_text += "\n" # spacer between alignment blocks
#ret_text += "Align [{}] trans {} : path {}".format(i, transcript_name, str(aligned_nodes_entry)) + "\n"
for i in range(0, align_width):
repr_node = self.get_representative_column_node(i)
ret_text += repr_node.toString() + "\n"
return ret_text
def squeeze(self):
"""
merge unbranched nodes into single nodes
"""
num_transcripts = len(self)
width = self.width()
node_obj_matrix = list()
for i in range(0,num_transcripts):
node_obj_matrix.append([])
squeezed_alignment = Node_alignment(self.get_gene_id(), self.get_transcript_names(), node_obj_matrix)
# walk the node list and merge unbranched stretches into single nodes
block_breakpoints = []
prev_col_node_set = self.get_node_occupancy_at_column_pos(0)
for i in range(1,width):
node_column_set = self.get_node_occupancy_at_column_pos(i)
#print("Comparing {} to {} == {}".format(prev_col_node_set, node_column_set, prev_col_node_set == node_column_set))
if node_column_set != prev_col_node_set:
block_breakpoints.append(i)
prev_col_node_set = node_column_set
block_breakpoints.append(width)
logger.debug("Block_breakpoints: {}".format(block_breakpoints))
blocked_nodes = list()
for i in range(0, width+1):
if i in block_breakpoints:
# found block terminator
node_to_add = None
if len(blocked_nodes) > 1:
node_to_add = TNode.TNode.merge_nodes(blocked_nodes)
else:
node_to_add = blocked_nodes[ 0 ]
blocked_node_occupancy = self.get_node_occupancy_at_column_pos(i-1)
squeezed_alignment.append_node_according_to_occupancy_pattern(node_to_add, blocked_node_occupancy)
blocked_nodes = list() # reinit
# add to running block
if i < width:
blocked_nodes.append(self.get_representative_column_node(i))
return squeezed_alignment
def to_gene_fasta_and_gtf(self, gene_name):
transcript_names = self.get_transcript_names()
gene_seq = ""
# init transcript gtf records
transcript_to_gtf_lines = dict()
transcript_to_malign = dict()
transcript_to_Trinity_fa_seq = dict()
transcript_to_Trinity_fa_path = dict()
for transcript_name in transcript_names:
transcript_to_gtf_lines[ transcript_name ] = ""
transcript_to_malign[ transcript_name ] = ""
transcript_to_Trinity_fa_path[ transcript_name ] = list()
transcript_to_Trinity_fa_seq[ transcript_name ] = ""
for i in range(0,self.width()):
node_obj = self.get_representative_column_node(i)
node_seq = node_obj.get_seq()
if len(node_seq) == 0:
raise RuntimeError("Error, node seq of length zero: node=" + str(node_obj))
node_id = node_obj.get_loc_id()
node_occupancy = self.get_node_occupancy_at_column_pos(i)
pos_start = len(gene_seq) + 1
gene_seq += node_obj.get_seq()
pos_end = len(gene_seq)
# include gtf record for transcripts
for j in range(0,len(transcript_names)):
transcript_name = transcript_names[ j ]
if node_occupancy[ j ] is True:
# make gtf record
transcript_to_gtf_lines[ transcript_name ] += "\t".join([gene_name, "Trinity_gene", "exon",
str(pos_start), str(pos_end), '.', '+', '.',
"gene_id \"{}\"; transcript_id \"{}\"\n".format(
gene_name, transcript_name) ] )
transcript_to_malign[ transcript_name ] += node_seq
# build Trinity fasta sequence and path info:
cdna_seq_len = len(transcript_to_Trinity_fa_seq[ transcript_name ])
rel_node_start = cdna_seq_len # index starting at zero
rel_node_end = cdna_seq_len + len(node_seq) -1
transcript_to_Trinity_fa_seq[ transcript_name ] += node_seq
transcript_to_Trinity_fa_path[ transcript_name ].append("{}:{}-{}".format(node_id, rel_node_start, rel_node_end))
else:
for x in range(0,len(node_seq)):
transcript_to_malign[ transcript_name ] += '.'
# build mini-gtf section
gene_gtf = "\n".join(transcript_to_gtf_lines.values())
# build Trinity fasta text
trinity_fasta_text = ""
for transcript_name in transcript_names:
transcript_seq = transcript_to_Trinity_fa_seq[transcript_name]
path_list = transcript_to_Trinity_fa_path[transcript_name]
#logger.debug("path list: " + str(path_list))
path_list_text = " ".join(path_list)
trinity_fasta_text += ">{} len={} path=[{}]\n{}\n".format(transcript_name, len(transcript_seq),
path_list_text, transcript_seq)
return (gene_seq, gene_gtf, trinity_fasta_text, transcript_to_malign)
def reassign_node_loc_ids_by_align_order(self):
for i in range(0,self.width()):
repr_node = self.get_representative_column_node(i)
repr_node.set_loc_id(str(i))
def to_splice_graph(self, gene_name, reset_node_ids=False):
aligned_nodes = self.get_aligned_nodes()
width = self.width()
refined_tgraph = TGraph.TGraph(gene_name)
new_node_list = list()
for i in range(0,width):
repr_node = self.get_representative_column_node(i)
logger.debug("repr node: {}".format(repr_node.toString()))
transcripts = repr_node.get_transcripts()
loc_id = repr_node.get_loc_id()
if reset_node_ids:
loc_id = "loc_" + str(i)
new_node = refined_tgraph.get_node(transcripts, loc_id, repr_node.get_seq())
new_node_list.append(new_node)
#############
# build graph
for iso_node_alignment in aligned_nodes:
prev = None
for i in range(0,width):
if iso_node_alignment[i] != None:
if prev != None:
refined_tgraph.add_edges([prev], [new_node_list[i]])
prev = new_node_list[i]
logger.debug("New graph node listing:")
for node in new_node_list:
logger.debug(node.toString())
return refined_tgraph
def get_transcript_seqs(self):
transcript_names = self.get_transcript_names()
transcript_to_Trinity_fa_seq = dict()
for transcript_name in transcript_names:
transcript_to_Trinity_fa_seq[ transcript_name ] = ""
for i in range(0,self.width()):
node_obj = self.get_representative_column_node(i)
node_seq = node_obj.get_seq()
if len(node_seq) == 0:
raise RuntimeError("Error, node seq of length zero: node=" + str(node_obj))
node_id = node_obj.get_loc_id()
node_occupancy = self.get_node_occupancy_at_column_pos(i)
# include gtf record for transcripts
for j in range(0,len(transcript_names)):
transcript_name = transcript_names[ j ]
if node_occupancy[ j ] is True:
transcript_to_Trinity_fa_seq[ transcript_name ] += node_seq
return transcript_to_Trinity_fa_seq
def remove_redundant_sequences(self):
transcripts_remove = set()
transcript_seqs = self.get_transcript_seqs();
seen = dict()
for transcript_acc in transcript_seqs:
transcript_seq = transcript_seqs[transcript_acc]
if transcript_seq in seen:
sys.stderr.write("warning, transcript polishing yielded duplicate seq entry... targeting {} for removal.\n".format(transcript_acc))
transcripts_remove.add(transcript_acc)
seen[transcript_seq] = True
if transcripts_remove:
revised_transcript_names = list()
revised_aligned_nodes = list()
for i in range(0, len(self.transcript_names)):
transcript_name = self.transcript_names[i]
aligned_nodes = self.aligned_nodes[i]
if transcript_name not in transcripts_remove:
revised_transcript_names.append(transcript_name)
revised_aligned_nodes.append(aligned_nodes)
self.transcript_names = revised_transcript_names
self.aligned_nodes = revised_aligned_nodes
self.remove_empty_aligned_node_columns()
return True
else:
return False
def remove_empty_aligned_node_columns(self):
column_indices_to_remove = list()
for col_pos in range(0, len(self)):
node_list = list(self.get_node_set_at_column_pos(col_pos))
if len(node_list) == 0:
column_indices_to_remove.append(col_pos)
if len(column_indices_to_remove) > 0:
column_indices_to_remove.reverse()
for idx in column_indices_to_remove:
for node_row in self.aligned_nodes:
del(node_row[idx])
return
|