1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#!/usr/bin/python3
# encoding: utf-8
from __future__ import (absolute_import, division,
print_function, unicode_literals)
import os, sys, re
import logging
import TGraph
import TNode
import Node_alignment
import Topological_sort
from Compact_graph_whole import Compact_graph_whole
from Compact_graph_partial import Compact_graph_partial
from Compact_graph_pruner import Compact_graph_pruner
import TGLOBALS
logger = logging.getLogger(__name__)
MAX_MM_RATE = 0.05
def refine_alignment(node_alignment_obj, reset_node_ids=False,
max_burr_length=25, max_bubble_pop_length=25):
"""
Create a new splice graph based on the node alignment obj.
Since some nodes may show up as duplicate (repeat) nodes, assign each a unique ID
"""
logger.debug("refine_alignment({})".format(node_alignment_obj))
# convert to splice graph
refined_tgraph = node_alignment_obj.to_splice_graph("^^SGRAPH2^^", reset_node_ids)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.pre.dot")
logger.debug("# pre-refinement tgraph:\n{}".format(refined_tgraph))
graph_compactor = Compact_graph_whole()
graph_compactor.compact_unbranched(refined_tgraph)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.linear_compact.dot")
###########
#
#for allowed_variants in (0, 1, 2):
# graph_compactor.compact_graph(refined_tgraph, allowed_variants)
# if TGLOBALS.DEBUG:
# refined_tgraph.draw_graph("ladeda.compact.m{}.dot".format(allowed_variants))
graph_compactor.compact_graph(refined_tgraph, 0)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.compact.m{}.dot".format(0))
## now extract prefix and suffix matches
partial_graph_compactor = Compact_graph_partial()
partial_graph_compactor.compact_graph(refined_tgraph)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.partial_compaction.dot")
logger.debug("# post-refinement partial (suffix/prefix adjustments) tgraph:\n{}".format(refined_tgraph))
compact_graph_pruner = Compact_graph_pruner()
compact_graph_pruner.remove_burrs(refined_tgraph, max_burr_length)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.burr_removal.dot")
logger.debug("# removing burrs tgraph:\n{}".format(refined_tgraph))
compact_graph_pruner.pop_small_bubbles(refined_tgraph, max_bubble_pop_length)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.bubble_popping.dot")
logger.debug("# bubbles popped tgraph:\n{}".format(refined_tgraph))
# final compaction post bubble popping
graph_compactor.compact_unbranched(refined_tgraph)
if TGLOBALS.DEBUG:
refined_tgraph.draw_graph("ladeda.final.dot")
logger.debug("# final tgraph:\n{}".format(refined_tgraph))
# convert compacted graph into a node alignment obj
splice_graph_node_alignment = splice_graph_to_node_alignment(refined_tgraph)
return(splice_graph_node_alignment)
def splice_graph_to_node_alignment(tgraph):
topologically_sorted_nodes = Topological_sort.Topological_sort.topologically_sort(tgraph.get_all_nodes())
logger.debug("Topologically sorted nodes: " + str(topologically_sorted_nodes))
# index loc node ids
aligned_loc_id_pos = dict()
for i in range(0, len(topologically_sorted_nodes)):
loc_id = topologically_sorted_nodes[i].get_loc_id()
aligned_loc_id_pos[loc_id] = i
new_alignments = list()
transcript_ids = set()
for node in topologically_sorted_nodes:
transcript_ids = transcript_ids.union(node.get_transcripts())
transcript_ids = list(transcript_ids)
for transcript_id in transcript_ids:
new_alignment = [None for i in topologically_sorted_nodes]
for node in topologically_sorted_nodes:
if transcript_id in node.get_transcripts():
loc_id = node.get_loc_id()
new_idx = aligned_loc_id_pos[loc_id]
new_alignment[new_idx] = node
new_alignments.append(new_alignment)
splice_graph_node_alignment = Node_alignment.Node_alignment(tgraph.get_gene_id(), transcript_ids, new_alignments)
logger.debug("Splice graph node_alignment: " + str(splice_graph_node_alignment))
return(splice_graph_node_alignment)
def remove_redundant_paths(node_alignment):
gene_id = node_alignment.get_gene_id()
transcript_names = node_alignment.get_transcript_names()
aligned_nodes = node_alignment.get_aligned_nodes()
num_transcripts_before_reduction = len(transcript_names)
# do all pairwise comparisons
# check for containments
containments = set()
for i in range(0,len(aligned_nodes)-1):
for j in range(i+1, len(aligned_nodes)):
if a_contains_b(aligned_nodes[i], aligned_nodes[j]):
containments.add(j)
elif a_contains_b(aligned_nodes[j], aligned_nodes[i]):
containments.add(i)
if containments:
adj_transcript_names = list()
adj_aligned_nodes = list()
for i in range(0, len(aligned_nodes)):
if i not in containments:
adj_transcript_names.append(transcript_names[i])
adj_aligned_nodes.append(aligned_nodes[i])
adj_splice_graph_node_alignment = Node_alignment.Node_alignment(gene_id, adj_transcript_names, adj_aligned_nodes)
num_after_reduction = len(adj_transcript_names)
logger.debug("Containments found, reporting reduced set {} of {} = {:.2f}%".format(
num_after_reduction, num_transcripts_before_reduction,
num_after_reduction/num_transcripts_before_reduction*100))
return adj_splice_graph_node_alignment
else:
logger.debug("No containments found")
return node_alignment # no changes
def get_first_node_idx(node_list):
# find starting place for comparison
begin_idx = -1
for i in range(0,len(node_list)):
if node_list[i] is not None:
begin_idx = i
break
if begin_idx < 0:
raise RuntimeError("Error, didn't find first non-none value among {} and {}".format(node_list_A, node_list_B))
return begin_idx
def get_end_node_idx(node_list):
# find ending place for comparison
end_idx = -1
for i in reversed(range(0, len(node_list))):
if node_list[i] is not None:
end_idx = i
break
if end_idx < 0:
raise RuntimeError("Error, didn't find last non-none value among {} and {}".format(node_list_A, node_list_B))
return end_idx
def a_contains_b(node_list_A, node_list_B):
A_start = get_first_node_idx(node_list_A)
A_end = get_end_node_idx(node_list_A)
B_start = get_first_node_idx(node_list_B)
B_end = get_end_node_idx(node_list_B)
if not (A_start <= B_start and A_end >= B_end):
return False # no containment
# ensure that in overlapping region, they have identical nodes
for i in range(B_start, B_end+1):
# if we see any difference, then not compatible
if node_list_A[i] != node_list_B[i]:
return False
# must be compatible and contained
return True
|