1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
//#ifndef FORCE_DEBUG
//#define NDEBUG
//#endif
#include <string>
#include <algorithm>
#include "analysis/DNAVector.h"
#include "analysis/KmerTable.h"
#include "base/CommandLineParser.h"
#include "analysis/sequenceUtil.h"
extern "C"
{
#include <fcntl.h>
#ifndef WIN32
#include <unistd.h>
#endif
}
static bool DEBUG_FLAG = false;
using namespace std;
static float MIN_KMER_ENTROPY = 1.0;
bool Exists(const string & s)
{
FILE * p = fopen(s.c_str(), "r");
if (p != NULL) {
fclose(p);
return true;
}
// cout << "FATAL ERROR: Could not open file for read: " << s << endl;
// cout << "Please make sure to enter the correct file name(s). Exiting now." << endl;
return false;
}
void SortPrint(FILE * pReads, svec<IDS> & ids, const vecDNAVector & seq)
{
long long i;
Sort(ids);
int lastID = -1;
int id = -1;
int start = -1;
int edge = -1;
int lastStart = -1;
int lastEdge = -1;
int ori;
string line;
char tmp[1024 * 10];
int lastStartTemp = -1;
int lastOri = 1;
for (i = 0; i<ids.lsize(); i++) {
id = ids[i].ID();
ori = ids[i].Ori();
start = ids[i].Start();
edge = ids[i].Edge();
//cout << id << "\t" << start << "\t" << edge << endl;
if (id != lastID
#ifndef NO_REVERSE_OUT
|| ori != lastOri
#endif
) {
if (lastID != -1) {
// tail end of previous record
sprintf(tmp, "%d\t%d\t", lastStart, lastEdge);
line += tmp;
if (lastStart > lastStartTemp) {
fprintf(pReads, "%s\t", line.c_str());
//const DNAVector &d = seq[lastID];
#ifndef NO_REVERSE_OUT
DNAVector d = seq[lastID];
if (lastOri == -1) {
d.ReverseComplement();
//cout << "Reversing" << endl;
}
else {
//cout << "Forward" << endl;
}
#endif
for (int j = 0; j<d.isize(); j++) {
tmp[1] = 0;
tmp[0] = d[j];
fprintf(pReads, "%s", tmp);
}
if (lastOri == -1)
fprintf(pReads, "\t-");
else
fprintf(pReads, "\t+");
fprintf(pReads, "\n");
}
//fprintf(pReads, "%d\t%d\n", lastStart, lastEdge);
line = "";
}
// building initial part of record line:
//fprintf(pReads, "%s\t%d\t%d\t", seq.Name(id).c_str(), start, edge);
sprintf(tmp, "%s\t%d\t%d\t", seq.Name(id).c_str(), start, edge);
line = tmp;
lastStartTemp = start;
}
lastID = id;
lastStart = start;
lastEdge = edge;
lastOri = ori;
}
if (id != -1) {
sprintf(tmp, "%d\t%d\t", start, edge);
line += tmp;
if (lastStart > lastStartTemp) {
fprintf(pReads, "%s\t", line.c_str());
DNAVector d = seq[id];
if (ori == -1)
d.ReverseComplement();
for (int j = 0; j<d.isize(); j++) {
tmp[1] = 0;
tmp[0] = d[j];
fprintf(pReads, "%s", tmp);
}
if (lastOri == 1)
fprintf(pReads, "\t+");
else
fprintf(pReads, "\t-");
fprintf(pReads, "\n");
}
//fprintf(pReads, "%d\t%d\n", start, edge);
}
}
//========================================================================
//========================================================================
//========================================================================
bool Irregular(char l)
{
if (l == 'A' || l == 'C' || l == 'G' || l == 'T')
return false;
//cout << "Irregular char: " << l << endl;
return true;
}
string ReadsExt(const string & in)
{
char tmp[1024 * 10];
strcpy(tmp, in.c_str());
int n = strlen(tmp);
for (int i = n - 1; i >= 0; i--) {
if (n - i > 6) {
break;
}
if (tmp[i] == '.') {
tmp[i] = 0;
string out = tmp;
out += ".reads";
return out;
}
}
string out = in + ".reads";
return out;
}
class KmerEntryCompare
{
const vecDNAVector& master;
size_t kmer_length;
DNAVector target;
public:
KmerEntryCompare(const vecDNAVector& m, size_t k) : master(m), kmer_length(k)
{
}
const DNAVector& GetDNA(KmerEntry kmer)
{
return kmer.Index() < 0 ? target : master[kmer.Index()];
}
int operator()(KmerEntry a, KmerEntry b)
{
const DNAVector &me = GetDNA(a);
const DNAVector &you = GetDNA(b);
//ML: perform the actual comparison on the raw char array
const char* me_str = (&(me[0])) + max(a.Pos(), 0);
const char* you_str = (&(you[0])) + max(b.Pos(), 0);
for (size_t i = 0; i<kmer_length; i++) {
if (me_str[i] > you_str[i])
return false;
if (me_str[i] < you_str[i])
return true;
}
return false;
}
void set_target(const DNAVector& d)
{
target = d;
}
};
void add_kmers(const vecDNAVector & all, int K, vector<KmerEntry>& result)
{
for (size_t j = 0; j<all.size(); j++) {
const DNAVector & d = all[j];
for (int i = 0; i <= d.isize() - K; i++) {
result.push_back(KmerEntry(j, i));
}
}
KmerEntryCompare comparer(all, K);
sort(result.begin(), result.end(), comparer);
}
long long BasesToNumberCountPlus(const vector<KmerEntry>& kmers,
svec<IDS> & ids,
long long & count,
const DNAVector & d,
int edge,
const vecDNAVector& reads,
int kmer_length) {
// Stores all kmer match positions among the reads in the svec <IDS> ids vector.
char kmerseq [kmer_length + 1];
strncpy(kmerseq, &d[1], kmer_length);
kmerseq[kmer_length] = '\0';
//cout << "kmer: [" << kmerseq << "]" << endl;
string s_kmerseq(kmerseq);
float entropy = compute_entropy(s_kmerseq);
if (entropy < MIN_KMER_ENTROPY) return(0); // only storing those kmers that aren't entirely low complexity. (ie. avoiding polyA)
KmerEntryCompare comparer(reads, kmer_length);
comparer.set_target(d);
KmerEntry dummyKmer;
vector<KmerEntry>::const_iterator iter = lower_bound(kmers.begin(), kmers.end(), dummyKmer, comparer);
if (iter == kmers.end() || comparer(dummyKmer, *iter))
return -1;
size_t ret = iter - kmers.begin();
count = 0;
for (size_t i = ret; i<kmers.size(); i++) {
if (comparer(kmers[i], kmers[ret]))
break;
if (comparer(kmers[ret], kmers[i]))
break;
//cerr << "\tkmer_idx: " << kmers[i].Index() << "\tpos: " << kmers[i].Pos() << " edge: " << edge << "\t" << reads.Name(kmers[i].Index()) << endl;
ids.push_back(IDS(kmers[i].Index(), kmers[i].Pos(), edge));
count++;
}
//cerr << "Searched: " << d.AsString() << "\tcount: " << count << endl;
return ret;
}
int main(int argc, char** argv)
{
commandArg<string> aStringCmmd("-i", "read fasta file");
commandArg<string> gStringCmmd("-g", "graph file");
commandArg<string> oStringCmmd("-o", "graph output");
commandArg<int> kCmmd("-k", "kmer size", 24);
commandArg<bool> strandCmmd("-strand", "strand specific", false);
commandArg<long> maxReadsCmd("-max_reads", "max number of reads to map to graph", -1);
commandArg<bool> debugCmmd("-debug", "verbosely describe operations", false);
commandArg<bool> no_cleanupCmmd("-no_cleanup", "retain input files on success", false);
commandLineParser P(argc, argv);
P.SetDescription("Assembles k-mer sequences.");
P.registerArg(aStringCmmd);
P.registerArg(gStringCmmd);
P.registerArg(oStringCmmd);
P.registerArg(kCmmd);
P.registerArg(strandCmmd);
P.registerArg(maxReadsCmd);
P.registerArg(debugCmmd);
P.registerArg(no_cleanupCmmd);
P.parse();
string aString = P.GetStringValueFor(aStringCmmd); // reads
string gString = P.GetStringValueFor(gStringCmmd); // graph input
string oString = P.GetStringValueFor(oStringCmmd); // graph output
bool sStrand = P.GetBoolValueFor(strandCmmd);
int k = P.GetIntValueFor(kCmmd) + 1;
long max_reads = P.GetLongValueFor(maxReadsCmd);
bool NO_CLEANUP = P.GetBoolValueFor(no_cleanupCmmd);
DEBUG_FLAG = P.GetBoolValueFor(debugCmmd);
if (Exists(oString) && (!Exists(gString)) && (!Exists(aString))) {
cerr << "Quantify graph previously finished successfully on " << aString << ". Not rerunning here." << endl;
return(0);
}
else if (!(Exists(gString) && Exists(aString))) {
cerr << "ERROR: missing either: " << gString << " or " << aString << ", cannot run QuantifyGraph here." << endl;
return(1);
}
int i, j;
vecDNAVector seq;
if (max_reads > 0) {
// std::cerr << "*Restricting number of input reads to " << max_reads << endl;
seq.setMaxSeqsToRead(max_reads);
}
seq.Read(aString, false, true, true, 1000); // parse the reads from the fasta file
vector<KmerEntry> kmers;
add_kmers(seq, k, kmers);
size_t m = kmers.size();
FlatFileParser parser; // read the raw graph
parser.Open(gString);
FILE * pOut = fopen(oString.c_str(), "w"); // output graph
string reads = ReadsExt(oString);
FILE * pReads = fopen(reads.c_str(), "w"); // output reads in context of graph
svec<IDS> ids;
ids.reserve(seq.size());
svec<char> first;
first.resize(100000, 'N');
// do an initial scan to set up the node identities and linkage info
while (parser.ParseLine()) {
if (parser.GetItemCount() >= 4) {
const string & s = parser.AsString(3); // kmer
int node = parser.AsInt(0);
int prevNode = parser.AsInt(1);
const char * p2 = s.c_str();
if (node >= first.isize())
first.resize(node + 10000, 'N');
first[node] = p2[0]; // first letter of the kmer stored
}
}
// now, do a second pass:
parser.Open(gString);
while (parser.ParseLine()) {
if (parser.GetItemCount() < 4) {
fprintf(pOut, "%s\n", parser.Line().c_str()); // component header line
// processing of component data from previously processed component
if (ids.lsize() > 0) {
SortPrint(pReads, ids, seq);
}
fprintf(pReads, "%s\n", parser.Line().c_str());
ids.clear();
continue;
}
const string & s = parser.AsString(3); // kmer
//float entropy = compute_entropy(s);
//cout << "[" << i << "," << j << "] " << s << " entropy: " << entropy << endl;
//if (entropy < MIN_KMER_ENTROPY) continue;
int node = parser.AsInt(0);
int prevNode = parser.AsInt(1);
const char * p2 = s.c_str();
long long edge = prevNode;
long long n1 = 0;
long long n2 = 0;
if (prevNode >= 0) {
// building the whole kmer sequence in 'sub'
DNAVector sub;
sub.resize(strlen(s.c_str()) + 1);
const char * p = s.c_str();
for (i = 0; i<sub.isize() - 1; i++)
sub[i + 1] = p[i];
if (first[prevNode] == 'N')
cout << "ERROR!! first[prevNode] where prevNode = " << prevNode << " unset" << endl;
sub[0] = first[prevNode];
BasesToNumberCountPlus(kmers, ids, n1, sub, edge, seq, k);
if (!sStrand) {
sub.ReverseComplement();
long long from = ids.lsize();
BasesToNumberCountPlus(kmers, ids, n2, sub, edge, seq, k);
if (n1 + n2 < 0x7FFFFFFF) {
for (long long x = from; x<ids.lsize(); x++) {
ids[x].SetOri(-1);
int len = seq[ids[x].ID()].isize();
int pos = ids[x].Start() + 1;
//cout << "len=" << len << " pos=" << pos;
#ifndef NO_REVERSE_OUT
ids[x].SetStart(len - pos - k + 1);
//cout << " new=" << len-pos-k+1 << endl;
#else
ids[x].SetStart(pos + 1);
#endif
}
}
else {
cout << "WARNING: k-mer overflow, n=" << n1 + n2 << ". Discarding." << endl;
n1 = n2 = 0;
}
}
}
for (i = 0; i<parser.GetItemCount(); i++) {
if (i>0)
fprintf(pOut, "\t");
if (i == 2) {
fprintf(pOut, "%d", (int)(n1 + n2));
}
else {
fprintf(pOut, "%s", parser.AsString(i).c_str());
}
}
fprintf(pOut, "\n");
} // end looping through the kmer graph nodes
if (ids.lsize() > 0) {
SortPrint(pReads, ids, seq);
}
fclose(pOut);
fclose(pReads);
// only remove the input files once the outputs have been successfully generated.
if (!NO_CLEANUP) {
// remove inputs to reduce file counts.
#ifdef WIN32
_unlink(aString.c_str());
_unlink(gString.c_str());
#else
unlink(aString.c_str());
unlink(gString.c_str());
#endif
}
return 0;
}
|