1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
# This file is part of Tryton. The COPYRIGHT file at the top level of
# this repository contains the full copyright notices and license terms.
import datetime
import operator
from collections import defaultdict
from trytond.model import ModelSQL, ValueMixin, fields
from trytond.pool import Pool, PoolMeta
from trytond.pyson import TimeDelta
from trytond.tools import grouped_slice
from trytond.transaction import Transaction
supply_period = fields.TimeDelta(
"Supply Period",
domain=['OR',
('supply_period', '=', None),
('supply_period', '>=', TimeDelta()),
])
class PurchaseConfiguration(metaclass=PoolMeta):
__name__ = 'purchase.configuration'
supply_period = fields.MultiValue(supply_period)
class PurchaseConfigurationSupplyPeriod(ModelSQL, ValueMixin):
"Purchase Configuration Supply Period"
__name__ = 'purchase.configuration.supply_period'
supply_period = supply_period
class PurchaseRequest(metaclass=PoolMeta):
'Purchase Request'
__name__ = 'purchase.request'
@classmethod
def _get_origin(cls):
origins = super(PurchaseRequest, cls)._get_origin()
return origins | {'stock.order_point'}
@classmethod
def generate_requests(cls, products=None, warehouses=None):
"""
For each product compute the purchase request that must be
created today to meet product outputs.
If products is specified it will compute the purchase requests
for the selected products.
If warehouses is specified it will compute the purchase request
necessary for the selected warehouses.
"""
pool = Pool()
OrderPoint = pool.get('stock.order_point')
Product = pool.get('product.product')
Location = pool.get('stock.location')
User = pool.get('res.user')
company = User(Transaction().user).company
if not company:
return
if warehouses is None:
# fetch warehouses:
warehouses = Location.search([
('type', '=', 'warehouse'),
])
warehouse_ids = [w.id for w in warehouses]
# fetch order points
order_points = OrderPoint.search([
('warehouse_location', '!=', None),
('company', '=', company.id),
])
# index them by product
product2ops = {}
product2ops_other = {}
for order_point in order_points:
if order_point.type == 'purchase':
dict_ = product2ops
else:
dict_ = product2ops_other
dict_[
(order_point.warehouse_location.id, order_point.product.id)
] = order_point
if products is None:
# fetch goods and assets
# ordered by ids to speedup reduce_ids in products_by_location
products = Product.search([
('type', 'in', ['goods', 'assets']),
('consumable', '=', False),
('purchasable', '=', True),
], order=[('id', 'ASC')])
product_ids = [p.id for p in products]
# aggregate product by minimum supply date
date2products = defaultdict(list)
for product in products:
min_date, max_date = cls.get_supply_dates(
product, company=company.id)
date2products[min_date, max_date].append(product)
# compute requests
new_requests = []
for (min_date, max_date), dates_products in date2products.items():
for sub_products in grouped_slice(dates_products):
sub_products = list(sub_products)
product_ids = [p.id for p in sub_products]
with Transaction().set_context(
forecast=True,
stock_date_end=min_date):
pbl = Product.products_by_location(warehouse_ids,
with_childs=True, grouping_filter=(product_ids,))
for warehouse_id in warehouse_ids:
min_date_qties = defaultdict(int,
((x, pbl.pop((warehouse_id, x), 0))
for x in product_ids))
# Do not compute shortage for product
# with different order point
product_ids = [
p.id for p in sub_products
if (warehouse_id, p.id) not in product2ops_other]
# Search for shortage between min-max
shortages = cls.get_shortage(
warehouse_id, product_ids, min_date, max_date,
min_date_qties=min_date_qties,
order_points=product2ops)
for product in sub_products:
if product.id not in shortages:
continue
shortage_date, product_quantity = shortages[product.id]
if shortage_date is None or product_quantity is None:
continue
order_point = product2ops.get(
(warehouse_id, product.id))
# generate request values
request = cls.compute_request(product,
warehouse_id, shortage_date, product_quantity,
company, order_point)
new_requests.append(request)
# delete purchase requests without a purchase line
products = set(products)
reqs = cls.search([
('state', '=', 'draft'),
('purchase_line', '=', None),
('company', '=', company.id),
('origin', 'like', 'stock.order_point,%'),
])
reqs = [r for r in reqs
if r.product in products and r.warehouse in warehouses]
cls.delete(reqs)
new_requests = cls.compare_requests(new_requests, company)
cls.create_requests(new_requests)
@classmethod
def create_requests(cls, new_requests):
to_save = []
for new_req in new_requests:
if new_req.supply_date == datetime.date.max:
new_req.supply_date = None
if new_req.computed_quantity > 0:
to_save.append(new_req)
cls.save(to_save)
@classmethod
def compare_requests(cls, new_requests, company):
"""
Compare new_requests with already existing request to avoid
to re-create existing requests.
"""
pool = Pool()
Uom = pool.get('product.uom')
Request = pool.get('purchase.request')
requests = Request.search([
('product', '!=', None),
('purchase_line', '!=', None),
('purchase_line.moves', '=', None),
('purchase_line.purchase.state', '!=', 'cancelled'),
('company', '=', company.id),
('origin', 'like', 'stock.order_point,%'),
])
# Fetch data from existing requests
existing_req = {}
for request in requests:
pline = request.purchase_line
# Skip incoherent request
if (request.product != pline.product
or request.warehouse != pline.purchase.warehouse):
continue
# Take smallest amount between request and purchase line
pline_qty = Uom.compute_qty(pline.unit, pline.quantity,
pline.product.default_uom, round=False)
quantity = min(request.computed_quantity, pline_qty)
existing_req.setdefault(
(request.product.id, request.warehouse.id),
[]).append({
'supply_date': (
request.supply_date or datetime.date.max),
'quantity': quantity,
})
for i in existing_req.values():
i.sort(key=lambda r: r['supply_date'])
# Update new requests to take existing requests into account
new_requests.sort(key=operator.attrgetter('supply_date'))
for new_req in new_requests:
for old_req in existing_req.get(
(new_req.product.id, new_req.warehouse.id), []):
if old_req['supply_date'] <= new_req.supply_date:
new_req.computed_quantity = max(0.0,
new_req.computed_quantity - old_req['quantity'])
new_req.quantity = Uom.compute_qty(
new_req.product.default_uom, new_req.computed_quantity,
new_req.unit, round=False)
new_req.quantity = new_req.unit.ceil(new_req.quantity)
old_req['quantity'] = max(0.0,
old_req['quantity'] - new_req.computed_quantity)
else:
break
return new_requests
@classmethod
def get_supply_dates(cls, product, **pattern):
"""
Return the interval of earliest supply dates for a product.
"""
Date = Pool().get('ir.date')
min_date = None
max_date = None
today = Date.today()
for product_supplier in product.product_suppliers_used(**pattern):
supply_date = product_supplier.compute_supply_date(date=today)
if supply_date == datetime.date.max:
continue
next_day = today + product_supplier.get_supply_period()
next_supply_date = product_supplier.compute_supply_date(
date=next_day)
if (not min_date) or supply_date < min_date:
min_date = supply_date
if (not max_date) or next_supply_date > max_date:
max_date = next_supply_date
if not min_date:
min_date = datetime.date.max
max_date = datetime.date.max
return (min_date, max_date)
@classmethod
def compute_request(cls, product, location_id, shortage_date,
product_quantity, company, order_point=None,
supplier_pattern=None):
"""
Return the value of the purchase request which will answer to
the needed quantity at the given date. I.e: the latest
purchase date, the expected supply date and the prefered
supplier.
"""
pool = Pool()
Uom = pool.get('product.uom')
Request = pool.get('purchase.request')
if supplier_pattern is None:
supplier_pattern = {}
else:
supplier_pattern = supplier_pattern.copy()
supplier_pattern['company'] = company.id
supplier, purchase_date = cls.find_best_supplier(product,
shortage_date, **supplier_pattern)
unit = product.purchase_uom or product.default_uom
target_quantity = order_point.target_quantity if order_point else 0.0
computed_quantity = target_quantity - product_quantity
product_quantity = unit.ceil(product_quantity)
quantity = Uom.compute_qty(
product.default_uom, computed_quantity, unit, round=False)
quantity = unit.ceil(quantity)
if order_point:
origin = 'stock.order_point,%s' % order_point.id
else:
origin = 'stock.order_point,-1'
return Request(product=product,
party=supplier and supplier or None,
quantity=quantity,
unit=unit,
computed_quantity=computed_quantity,
computed_unit=product.default_uom,
purchase_date=purchase_date,
supply_date=shortage_date,
stock_level=product_quantity,
company=company,
warehouse=location_id,
origin=origin,
)
@classmethod
def get_shortage(cls, location_id, product_ids, min_date, max_date,
min_date_qties, order_points):
"""
Return for each product the first date between min_date and max_date
where the stock quantity is less than the minimal quantity and the
smallest stock quantity in the interval or None if there is no date
where stock quantity is less than the minimal quantity.
The minimal quantity comes from the order point or is zero.
min_date_qty is the quantities for each products at the min_date.
order_points is a dictionary that links products to order point.
"""
Product = Pool().get('product.product')
res_dates = {}
res_qties = {}
min_quantities = defaultdict(float)
for product_id in product_ids:
order_point = order_points.get((location_id, product_id))
if order_point:
min_quantities[product_id] = order_point.min_quantity
with Transaction().set_context(
forecast=True,
stock_date_start=min_date,
stock_date_end=max_date):
pbl = Product.products_by_location(
[location_id], with_childs=True,
grouping=('date', 'product'),
grouping_filter=(None, product_ids))
pbl_dates = defaultdict(dict)
for key, qty in pbl.items():
date, product_id = key[1:]
pbl_dates[date][product_id] = qty
current_date = min_date
current_qties = min_date_qties.copy()
products_to_check = product_ids.copy()
while (current_date < max_date) or (current_date == min_date):
for product_id in products_to_check:
current_qty = current_qties[product_id]
min_quantity = min_quantities[product_id]
res_qty = res_qties.get(product_id)
res_date = res_dates.get(product_id)
if min_quantity is not None and current_qty < min_quantity:
if not res_date:
res_dates[product_id] = current_date
if (not res_qty) or (current_qty < res_qty):
res_qties[product_id] = current_qty
if current_date == datetime.date.max:
break
current_date += datetime.timedelta(1)
pbl = pbl_dates[current_date]
products_to_check.clear()
for product_id, qty in pbl.items():
current_qties[product_id] += qty
products_to_check.append(product_id)
return {x: (res_dates.get(x), res_qties.get(x)) for x in product_ids}
|