File: ConvolutionClustering.h

package info (click to toggle)
tulip 3.7.0dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 39,428 kB
  • sloc: cpp: 231,403; php: 11,023; python: 1,128; sh: 671; yacc: 522; makefile: 315; xml: 63; lex: 55
file content (67 lines) | stat: -rwxr-xr-x 1,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#ifndef _ConvolutionClustering_H
#define _ConvolutionClustering_H

#include <vector>

#include <tulip/TulipPlugin.h>


/** \addtogroup clustering */
/*@{*/
/** This plugin allow the discretization and the filtering of the distribution of
* a node metric using convolution.
*
* A detailled usage of this procedure is detailled in :
*
* D. Auber, M. Delest and Y. Chiricota \n
* "Strahler based graph clustering using convolution",\n
* Published by the IEEE Computer Society, \n
* 2004.
*
*/
class ConvolutionClustering:public tlp::DoubleAlgorithm {
public:

  ConvolutionClustering(tlp::PropertyContext);
  ~ConvolutionClustering();
  bool run();
  bool check(std::string &);
  void reset();
  std::vector<double> *getHistogram();
  void setParameters(int histosize,int threshold,int width);
  void getParameters(int &histosize,int &threshold,int &width);
  void autoSetParameter();
  std::list<int> getLocalMinimum();
private:
//  void buildSubGraphs(const std::vector<int>& ranges);
  void getClusters(const std::vector<int>& ranges);
  std::vector<double> smoothHistogram;
  std::map<int,int> histogramOfValues;
  int histosize,threshold,width;
  tlp::DoubleProperty *metric;
};
/*@}*/
#endif