1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <algorithm>
#include <tulip/Circle.h>
#include "BubbleTree.h"
#include "DatasetTools.h"
LAYOUTPLUGINOFGROUP(BubbleTree,"Bubble Tree","D.Auber/S.Grivet","16/05/2003","Stable","1.0","Tree");
using namespace std;
using namespace tlp;
struct greaterRadius {
const std::vector<double> &radius;
greaterRadius(const std::vector<double> &r):radius(r) {}
bool operator()(unsigned i1,unsigned i2) const {
return radius[i1]>radius[i2];
}
};
double BubbleTree::computeRelativePosition(tlp::node n, TLP_HASH_MAP<tlp::node, tlp::Vector<double, 5 > > *relativePosition) {
Size tmpSizeFather = nodeSize->getNodeValue(n);
tmpSizeFather[2] = 0.; //remove z-coordiantes because the drawing is 2D
double sizeFather = tmpSizeFather.norm() / 2.;
if (sizeFather < 1E-5) sizeFather = 1.;
double sizeVirtualNode = 1.;
if (tree->indeg(n) == 0) sizeVirtualNode = 0.;
/*
* Iniatilize node position
*/
(*relativePosition)[n][0] = 0.;
(*relativePosition)[n][1] = 0.;
/*
* Special case if the node is a leaf.
*/
if (tree->outdeg(n)==0) {
(*relativePosition)[n][2] = 0.;
(*relativePosition)[n][3] = 0.;
Size tmpSizeNode = nodeSize->getNodeValue(n);
tmpSizeNode[2] = 0.;
(*relativePosition)[n][4] = tmpSizeNode.norm() / 2.;
return (*relativePosition)[n][4];
}
/*
* Recursive call to obtain the set of radius of the children of n
* A node is dynamically inserted in the neighborhood of n in order to
* reserve space for the connection of the father of n
*/
unsigned int Nc = tree->outdeg(n)+1;
vector<double> angularSector(Nc);
std::vector<double> realCircleRadius(Nc);
realCircleRadius[0] = sizeVirtualNode;
double sumRadius = sizeVirtualNode;
Iterator<node> *itN=tree->getOutNodes(n);
for (unsigned int i=1; itN->hasNext(); ++i) {
node itn = itN->next();
realCircleRadius[i] = computeRelativePosition(itn, relativePosition);
sumRadius += realCircleRadius[i];
}
delete itN;
double resolution = 0.;
if (nAlgo) {
std::vector<double> subCircleRadius(Nc);
subCircleRadius[0] = realCircleRadius[0];
double maxRadius = sizeVirtualNode;
unsigned int maxRadiusIndex = 0;
for (unsigned int i=0; i<Nc; ++i) {
subCircleRadius[i] = realCircleRadius[i];
if (maxRadius < subCircleRadius[i]) {
maxRadius = subCircleRadius[i];
maxRadiusIndex = i;
}
}
if ( maxRadius > (sumRadius/2.)) {
double ratio;
if (sumRadius - maxRadius > 1E-5)
ratio = maxRadius / (sumRadius - maxRadius);
else
ratio = 1.;
for (unsigned int i=0; i<Nc; ++i) {
if (i!=maxRadiusIndex)
subCircleRadius[i] *= ratio;
}
sumRadius = 2. * maxRadius;
}
for (unsigned int i = 0; i<Nc; ++i) {
angularSector[i] = 2. * M_PI * subCircleRadius[i]/sumRadius;
}
}
else {
resolution = 2. * M_PI;
std::vector<unsigned> index(Nc);
for(unsigned i=0; i<Nc; ++i)
index[i]=i;
sort(index.begin(), index.end(), greaterRadius(realCircleRadius));
std::vector<unsigned>::const_iterator i=index.begin();
for (; i!=index.end(); ++i) {
double radius = realCircleRadius[*i];
double angleMax = 2. * asin(radius/(radius+sizeFather));
double angle = radius*resolution / sumRadius;
if (angle>angleMax) {
angularSector[*i] = angleMax;
sumRadius -= radius;
resolution -= angleMax;
}
else break;
}
if (i!=index.end()) {
for (; i!=index.end(); ++i) {
double radius = realCircleRadius[*i];
double angle = radius*resolution/sumRadius;
angularSector[*i] = angle;
}
resolution = 0.;
}
else
resolution /= Nc;
}
double angle = 0.;
vector<tlp::Circle<double> > circles(Nc);
for (unsigned int i=0; i<Nc; ++i) {
double packRadius;
if (fabs(sin(angularSector[i])) > 1E-05)
packRadius = realCircleRadius[i] / sin(angularSector[i] /2.);
else
packRadius = 0.;
packRadius = std::max(packRadius, sizeFather + realCircleRadius[i]);
if (i > 0)
angle += (angularSector[i-1]+angularSector[i]) / 2. + resolution;
circles[i][0] = packRadius*cos(angle);
circles[i][1] = packRadius*sin(angle);
circles[i].radius = realCircleRadius[i];
}
Circle<double> circleH = tlp::enclosingCircle(circles);
(*relativePosition)[n][2] = -circleH[0];
(*relativePosition)[n][3] = -circleH[1];
(*relativePosition)[n][4] = sqrt(circleH.radius*circleH.radius - circleH[1]*circleH[1])-fabs(circleH[0]);
/*
* Set relative position of all children
* according to the center of the enclosing circle
*/
itN = tree->getOutNodes(n);
for (unsigned int i=1; i<Nc; ++i) {
node itn = itN->next();
(*relativePosition)[itn][0] = circles[i][0]-circleH[0];
(*relativePosition)[itn][1] = circles[i][1]-circleH[1];
}
delete itN;
return circleH.radius;
}
void BubbleTree::calcLayout2(tlp::node n, TLP_HASH_MAP<tlp::node,tlp::Vector<double, 5 > > *relativePosition,
const tlp::Vector<double,3> &enclosingCircleCenter,
const tlp::Vector<double,3> &originNodePosition) {
/*
* Make rotation around the center of the enclosing circle in order to align :
* the virtual node, the enclosing circle' center and the grand father of the node.
*/
Vector<double,3> bend,zeta,zetaOriginal;
bend.fill(0.);
bend[0] = (*relativePosition)[n][4];
zeta[0] = (*relativePosition)[n][2];
zeta[1] = (*relativePosition)[n][3];
zeta[2] = 0.;
zetaOriginal = zeta;
Vector<double,3> vect,vect3;
vect = originNodePosition-enclosingCircleCenter;
vect /= vect.norm();
vect3 = zeta+bend;
vect3 /= vect3.norm();
double cosAlpha,sinAlpha;
cosAlpha = (vect3.dotProduct(vect));
sinAlpha = (vect^vect3)[2];
Vector<double,3> rot1,rot2;
rot1[0] = cosAlpha;
rot1[1] = -sinAlpha;
rot1[2]=0.;
rot2[0] = sinAlpha;
rot2[1] = cosAlpha;
rot2[2]=0.;
zeta = rot1*zeta[0] + rot2*zeta[1];
layoutResult->setNodeValue(n, Coord(static_cast<float>(enclosingCircleCenter[0]+zeta[0]),
static_cast<float>(enclosingCircleCenter[1]+zeta[1]),
0.) );
/*
* Place bend on edge to prevent overlaping
*/
if(tree->outdeg(n)>0) {
bend += zetaOriginal;
bend = rot1*bend[0]+rot2*bend[1];
bend += enclosingCircleCenter;
Vector<double,3> a = enclosingCircleCenter+zeta-bend;
Vector<double,3> b = originNodePosition-bend;
a /= a.norm();
b /= b.norm();
if ((1. - fabs(a.dotProduct(b))) > 1E-5) {
Iterator<edge> *itE=tree->getInEdges(n);
edge ite=itE->next();
delete itE;
vector<Coord>tmp(1);
tmp[0] = Coord(static_cast<float>(bend[0]), static_cast<float>(bend[1]), 0.);
layoutResult->setEdgeValue(ite,tmp);
}
}
/*
* Make the recursive call, to place the children of n.
*/
Iterator<node> *it=tree->getOutNodes(n);
while (it->hasNext()) {
node itn = it->next();
Vector<double,3> newpos;
newpos[0] = (*relativePosition)[itn][0];
newpos[1] = (*relativePosition)[itn][1];
newpos[2] = 0.;
newpos = rot1*newpos[0] + rot2*newpos[1];
newpos += enclosingCircleCenter;
calcLayout2(itn, relativePosition, newpos, enclosingCircleCenter+zeta);
}
delete it;
}
void BubbleTree::calcLayout(tlp::node n, TLP_HASH_MAP< tlp::node, tlp::Vector< double, 5 > >* relativePosition) {
/*
* Make the recursive call, to place the children of n.
*/
layoutResult->setNodeValue(n,Coord(0., 0., 0.));
Iterator<node> *it = tree->getOutNodes(n);
while (it->hasNext()) {
node itn=it->next();
Coord newpos(static_cast<float>((*relativePosition)[itn][0]-(*relativePosition)[n][2]),
static_cast<float>((*relativePosition)[itn][1]-(*relativePosition)[n][3]), 0.f);
Vector<double,3> origin,tmp;
origin[0] = (*relativePosition)[itn][0]-(*relativePosition)[n][2];
origin[1] = (*relativePosition)[itn][1]-(*relativePosition)[n][3];
origin[2] = 0.;
tmp.fill(0.);
calcLayout2(itn, relativePosition, origin, tmp);
}
delete it;
}
namespace {
const char * paramHelp[] = {
//Complexity
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "bool" ) \
HTML_HELP_DEF( "values", "[true, false] o(nlog(n)) / o(n)" ) \
HTML_HELP_DEF( "default", "true" ) \
HTML_HELP_BODY() \
"This parameter enables to choose the complexity of the algorithm." \
HTML_HELP_CLOSE()
};
}
BubbleTree::BubbleTree(const tlp::PropertyContext &context):LayoutAlgorithm(context) {
addNodeSizePropertyParameter(this);
addParameter<bool>("complexity",paramHelp[0],"true");
addDependency<LayoutAlgorithm>("Connected Component Packing", "1.0");
}
BubbleTree::~BubbleTree() {}
bool BubbleTree::run() {
if (!ConnectedTest::isConnected(graph)) {
// for each component draw
std::vector<std::set<node> > components;
string err;
// push a temporary graph state (not redoable)
graph->push(false);
ConnectedTest::computeConnectedComponents(graph, components);
for (unsigned int i = 0; i < components.size(); ++i) {
Graph * tmp = graph->inducedSubGraph(components[i]);
tmp->computeProperty("Bubble Tree", layoutResult, err, pluginProgress, dataSet);
}
// call connected componnent packing
LayoutProperty tmpLayout(graph);
DataSet tmpdataSet;
tmpdataSet.set("coordinates", layoutResult);
graph->computeProperty("Connected Component Packing", &tmpLayout, err, pluginProgress, &tmpdataSet);
// forget last temporary graph state
graph->pop();
*layoutResult = tmpLayout;
return true;
}
if (!getNodeSizePropertyParameter(dataSet, nodeSize)) {
if (graph->existProperty("viewSize")) {
nodeSize = graph->getProperty<SizeProperty>("viewSize");
}
else {
nodeSize = graph->getProperty<SizeProperty>("viewSize");
nodeSize->setAllNodeValue(Size(1., 1., 1.));
}
}
if (dataSet == 0 || !dataSet->get("complexity",nAlgo))
nAlgo = true;
layoutResult->setAllEdgeValue(vector<Coord>(0));
if (pluginProgress)
pluginProgress->showPreview(false);
// push a temporary graph state (not redoable)
// preserving layout updates
std::vector<PropertyInterface*> propsToPreserve;
if (layoutResult->getName() != "")
propsToPreserve.push_back(layoutResult);
graph->push(false, &propsToPreserve);
tree = TreeTest::computeTree(graph, pluginProgress);
if (pluginProgress && pluginProgress->state() != TLP_CONTINUE) {
graph->pop();
return false;
}
node startNode = tree->getSource();
assert(startNode.isValid());
TLP_HASH_MAP<node,Vector<double,5> > relativePosition;
computeRelativePosition(startNode, &relativePosition);
calcLayout(startNode, &relativePosition);
// forget last temporary graph state
graph->pop();
return true;
}
|