1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#ifndef _MixedModel_H
#define _MixedModel_H
/** \addtogroup layout */
/*@{*/
/** This plugin is an implementation of the planar polyline graph
* drawing algorithm, the mixed model algorithm, first published as:
*
* C. Gutwenger and P. Mutzel, \n
* "Planar Polyline Drawings with Good Angular Resolution", \n
* "Lecture Notes In Computer Science, Vol. 1547" \n
* "Proceedings of the 6th International Symposium on Graph Drawing," \n
* pages "167--182" \n
* 1998 \n
*
* Let n be the number of nodes, the original algorithm complexity is in O(n).\n
* But the implementation of the canonical ordering has not been made in O(n).\n
* This version of the algorithm considers each connected component of the graph,
* tests if it is planar or not. If not, it computes a planar subgraphs, which is
* a maximal planar "sub-map". Then an area aware version of Gutwenger and Mutzel 's
* algorithm is used, and if the connected component was not planar, it adds the
* "unplanar" edges in 3D. Finally, it uses the Connected Component Packing plugin
* of Tulip Software to pack the connected components.\n
*
*/
class MixedModel : public tlp::LayoutAlgorithm {
public:
MixedModel(const tlp::PropertyContext &context);
~MixedModel();
bool run();
bool check(std::string &);
private:
std::vector<tlp::edge> getPlanarSubGraph(tlp::PlanarConMap *graph, std::vector<tlp::edge> unplanar_edges);
void initPartition();
void assignInOutPoints();
void computeCoords();
void placeNodesEdges();
tlp::edge existEdge(tlp::node n, tlp::node v) {
return carte->existEdge(n , v, false);
}
tlp::node rightV(unsigned int k);
tlp::node leftV(unsigned int k);
int next_right(unsigned int k, const tlp::node v);
int next_left(unsigned int k, const tlp::node v);
tlp::PlanarConMap* carte;
std::vector< std::vector<tlp::node> > V;
std::map<tlp::node, tlp::Coord> NodeCoords;
std::map<tlp::node, int> outl;
std::map<tlp::node, int> outr;
std::map<tlp::node, int> inl;
std::map<tlp::node, int> inr;
std::map<tlp::node, unsigned int> rank;
std::map<tlp::node, std::vector<tlp::edge> > EdgesIN;
std::map<tlp::node, std::vector<tlp::edge> > EdgesOUT;
std::map<tlp::edge, std::vector<tlp::Coord> > InPoints;
std::map<tlp::edge, tlp::Coord> OutPoints;
tlp::Graph * Pere;
tlp::PlanarConMap * graphMap;
tlp::Graph * currentGraph;
std::vector<tlp::edge> dummy;
std::map<tlp::node, std::vector<tlp::Coord> > out_points;
tlp::MutableContainer<tlp::Coord> nodeSize;
std::vector<tlp::edge> unplanar_edges;
bool planar;
tlp::SizeProperty *sizeResult;
tlp::IntegerProperty *glyphResult;
};
/*@}*/
#endif
|