File: DegreeMetric.cpp

package info (click to toggle)
tulip 3.7.0dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 39,428 kB
  • sloc: cpp: 231,403; php: 11,023; python: 1,128; sh: 671; yacc: 522; makefile: 315; xml: 63; lex: 55
file content (156 lines) | stat: -rwxr-xr-x 4,937 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#include "DegreeMetric.h"

using namespace tlp;

DOUBLEPLUGINOFGROUP(DegreeMetric,"Degree","David Auber","04/10/2001","Stable","1.0","Graph");

namespace {
const char * paramHelp[] = {
  //Degree type
  HTML_HELP_OPEN()         \
  HTML_HELP_DEF( "type", "String Collection" ) \
  HTML_HELP_DEF( "default", "InOut" )  \
  HTML_HELP_BODY() \
  "This parameter indicates the type of degree to compute (in/out/inout)."  \
  HTML_HELP_CLOSE(),
  HTML_HELP_OPEN()              \
  HTML_HELP_DEF( "type", "DoubleProperty" )       \
  HTML_HELP_DEF( "value", "An existing metric corresponding to weights.")   \
  HTML_HELP_DEF( "default", "none" )          \
  HTML_HELP_BODY()              \
  "The weighted degree of a node is the sum of weights of "\
  "all its in/out/inout edges. "\
  "If no metric is specified, using a uniform metric value of 1 for all edges " \
  "returns the usual degree for nodes (number of in/out/inout neighbors)."\
  HTML_HELP_CLOSE(),
  HTML_HELP_OPEN()         \
  HTML_HELP_DEF( "type", "bool" ) \
  HTML_HELP_DEF( "default", "false" )  \
  HTML_HELP_BODY() \
  "If true the mesure will be normalized unweight: m(n) = deg(n) / (#V - 1) " \
  "If true the mesure will be normalized unweight: m(n) = deg_w(n) / [(sum(e_w)/#E)(#V - 1)] " \
  HTML_HELP_CLOSE(),

};
}
#define DEGREE_TYPE "type"
#define DEGREE_TYPES "InOut;In;Out;"
#define INOUT 0
#define IN 1
#define OUT 2
//==============================================================================
DegreeMetric::DegreeMetric(const tlp::PropertyContext &context):DoubleAlgorithm(context) {
  addParameter<StringCollection>(DEGREE_TYPE, paramHelp[0], DEGREE_TYPES);
  addParameter<DoubleProperty>("metric", paramHelp[1], 0, false);
  addParameter<bool>("norm", paramHelp[2], "false", false);
}
//==================================================================
bool DegreeMetric::run() {
  StringCollection degreeTypes(DEGREE_TYPES);
  degreeTypes.setCurrent(0);
  DoubleProperty* weights = 0;
  bool norm = false;

  if (dataSet!=0) {
    dataSet->get(DEGREE_TYPE, degreeTypes);
    dataSet->get("metric", weights);
    dataSet->get("norm", norm);
  }

  //sum w_e = E_w/#E, sum d_n = 2E_w
  double normalization = 1.;

  if (norm && graph->numberOfNodes() > 1 && graph->numberOfEdges())
    normalization = graph->numberOfNodes() - 1;

  node n;

  if (!weights) {
    switch(degreeTypes.getCurrent()) {
    case INOUT:
      forEach(n, graph->getNodes())
      doubleResult->setNodeValue(n, double(graph->deg(n))/normalization);
      break;

    case IN:
      forEach(n, graph->getNodes())
      doubleResult->setNodeValue(n, double(graph->indeg(n))/normalization);
      break;

    case OUT:
      forEach(n, graph->getNodes())
      doubleResult->setNodeValue(n, double(graph->outdeg(n))/normalization);
      break;
    }

    // null value for edges
    doubleResult->setAllEdgeValue(0);
  }
  else {
    if (norm && graph->numberOfNodes() > 1 && graph->numberOfEdges() > 0) {
      double sum = 0;
      edge e;
      forEach(e, graph->getEdges())
      sum += fabs(weights->getEdgeValue(e));
      normalization = (sum / double(graph->numberOfEdges())) * double(graph->numberOfNodes() - 1);

      if (fabs(normalization) < 1E-9) normalization = 1.0;
    }

    switch(degreeTypes.getCurrent()) {
    case INOUT:
      forEach(n, graph->getNodes()) {
        edge e;
        double nWeight = 0.0;
        forEach(e, graph->getInOutEdges(n)) {
          nWeight += weights->getEdgeValue(e);
        }
        doubleResult->setNodeValue(n, nWeight / normalization);
      }
      break;

    case IN:
      forEach(n, graph->getNodes()) {
        edge e;
        double nWeight = 0.0;
        forEach(e, graph->getInEdges(n)) {
          nWeight += weights->getEdgeValue(e);
        }
        doubleResult->setNodeValue(n, nWeight / normalization);
      }
      break;

    case OUT:
      forEach(n, graph->getNodes()) {
        edge e;
        double nWeight = 0.0;
        forEach(e, graph->getOutEdges(n)) {
          nWeight += weights->getEdgeValue(e);
        }
        doubleResult->setNodeValue(n, nWeight / normalization);
      }
      break;
    }
  }

  return true;
}
//==================================================================