1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include "DegreeMetric.h"
using namespace tlp;
DOUBLEPLUGINOFGROUP(DegreeMetric,"Degree","David Auber","04/10/2001","Stable","1.0","Graph");
namespace {
const char * paramHelp[] = {
//Degree type
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "String Collection" ) \
HTML_HELP_DEF( "default", "InOut" ) \
HTML_HELP_BODY() \
"This parameter indicates the type of degree to compute (in/out/inout)." \
HTML_HELP_CLOSE(),
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "DoubleProperty" ) \
HTML_HELP_DEF( "value", "An existing metric corresponding to weights.") \
HTML_HELP_DEF( "default", "none" ) \
HTML_HELP_BODY() \
"The weighted degree of a node is the sum of weights of "\
"all its in/out/inout edges. "\
"If no metric is specified, using a uniform metric value of 1 for all edges " \
"returns the usual degree for nodes (number of in/out/inout neighbors)."\
HTML_HELP_CLOSE(),
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "bool" ) \
HTML_HELP_DEF( "default", "false" ) \
HTML_HELP_BODY() \
"If true the mesure will be normalized unweight: m(n) = deg(n) / (#V - 1) " \
"If true the mesure will be normalized unweight: m(n) = deg_w(n) / [(sum(e_w)/#E)(#V - 1)] " \
HTML_HELP_CLOSE(),
};
}
#define DEGREE_TYPE "type"
#define DEGREE_TYPES "InOut;In;Out;"
#define INOUT 0
#define IN 1
#define OUT 2
//==============================================================================
DegreeMetric::DegreeMetric(const tlp::PropertyContext &context):DoubleAlgorithm(context) {
addParameter<StringCollection>(DEGREE_TYPE, paramHelp[0], DEGREE_TYPES);
addParameter<DoubleProperty>("metric", paramHelp[1], 0, false);
addParameter<bool>("norm", paramHelp[2], "false", false);
}
//==================================================================
bool DegreeMetric::run() {
StringCollection degreeTypes(DEGREE_TYPES);
degreeTypes.setCurrent(0);
DoubleProperty* weights = 0;
bool norm = false;
if (dataSet!=0) {
dataSet->get(DEGREE_TYPE, degreeTypes);
dataSet->get("metric", weights);
dataSet->get("norm", norm);
}
//sum w_e = E_w/#E, sum d_n = 2E_w
double normalization = 1.;
if (norm && graph->numberOfNodes() > 1 && graph->numberOfEdges())
normalization = graph->numberOfNodes() - 1;
node n;
if (!weights) {
switch(degreeTypes.getCurrent()) {
case INOUT:
forEach(n, graph->getNodes())
doubleResult->setNodeValue(n, double(graph->deg(n))/normalization);
break;
case IN:
forEach(n, graph->getNodes())
doubleResult->setNodeValue(n, double(graph->indeg(n))/normalization);
break;
case OUT:
forEach(n, graph->getNodes())
doubleResult->setNodeValue(n, double(graph->outdeg(n))/normalization);
break;
}
// null value for edges
doubleResult->setAllEdgeValue(0);
}
else {
if (norm && graph->numberOfNodes() > 1 && graph->numberOfEdges() > 0) {
double sum = 0;
edge e;
forEach(e, graph->getEdges())
sum += fabs(weights->getEdgeValue(e));
normalization = (sum / double(graph->numberOfEdges())) * double(graph->numberOfNodes() - 1);
if (fabs(normalization) < 1E-9) normalization = 1.0;
}
switch(degreeTypes.getCurrent()) {
case INOUT:
forEach(n, graph->getNodes()) {
edge e;
double nWeight = 0.0;
forEach(e, graph->getInOutEdges(n)) {
nWeight += weights->getEdgeValue(e);
}
doubleResult->setNodeValue(n, nWeight / normalization);
}
break;
case IN:
forEach(n, graph->getNodes()) {
edge e;
double nWeight = 0.0;
forEach(e, graph->getInEdges(n)) {
nWeight += weights->getEdgeValue(e);
}
doubleResult->setNodeValue(n, nWeight / normalization);
}
break;
case OUT:
forEach(n, graph->getNodes()) {
edge e;
double nWeight = 0.0;
forEach(e, graph->getOutEdges(n)) {
nWeight += weights->getEdgeValue(e);
}
doubleResult->setNodeValue(n, nWeight / normalization);
}
break;
}
}
return true;
}
//==================================================================
|