File: AutoSize.cpp

package info (click to toggle)
tulip 3.7.0dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 39,428 kB
  • sloc: cpp: 231,403; php: 11,023; python: 1,128; sh: 671; yacc: 522; makefile: 315; xml: 63; lex: 55
file content (104 lines) | stat: -rwxr-xr-x 3,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#include <tulip/TulipPlugin.h>
#include <cmath>

using namespace tlp;

/** \addtogroup size */
/*@{*/
/// AutoSize.cpp - Compute size in order to prevent node-node overlapping
/**
 * This plug-ins compute size of nodes and edges such that, node-node overlapping do not exists (if it is possible).
 * and sizes of edges are proportional to size of nodes.
 *
 *  \author David Auber University Bordeaux I France: Email:auber@tulip-software.org
 */
class AutoSize:public SizeAlgorithm {
public:
  AutoSize(const PropertyContext &context):SizeAlgorithm(context) {}

  bool run() {
    node n;
    forEach(n,graph->getNodes())
    sizeResult->setNodeValue(n, getNodeValue(n));
    edge e;
    forEach(e,graph->getEdges())
    sizeResult->setEdgeValue(e, getEdgeValue(e));
    return true;
  }


private:
  Size getNodeValue(const node n) {
    LayoutProperty *entryLayout=graph->getProperty<LayoutProperty>("viewLayout");

    //Compute the minimal distance to one neighbour.
    Iterator<node> *itN=graph->getNodes();
    const Coord& tmp1=entryLayout->getNodeValue(n);
    double dist=1000;

    if (itN->hasNext()) {
      node itn=itN->next();

      while ((itn==n) && itN->hasNext()) itn=itN->next();

      if (itn!=n) {
        const Coord& tmp2=entryLayout->getNodeValue(itn);
        dist=sqrt((tmp1.getX()-tmp2.getX())*(tmp1.getX()-tmp2.getX())
                  +(tmp1.getY()-tmp2.getY())*(tmp1.getY()-tmp2.getY())
                  +(tmp1.getZ()-tmp2.getZ())*(tmp1.getZ()-tmp2.getZ())
                 );
      }
      else {
        dist=10;
      }
    }

    for (; itN->hasNext();) {
      node itn=itN->next();

      if (itn!=n) {
        const Coord& tmp2=entryLayout->getNodeValue(itn);
        double tmpDist=sqrt( (tmp1.getX()-tmp2.getX())*(tmp1.getX()-tmp2.getX())
                             +(tmp1.getY()-tmp2.getY())*(tmp1.getY()-tmp2.getY())
                             +(tmp1.getZ()-tmp2.getZ())*(tmp1.getZ()-tmp2.getZ())
                           );

        if (tmpDist<dist) dist=tmpDist;
      }
    }

    delete itN;
    return Size(static_cast<float>(dist/2),static_cast<float>(dist/2),static_cast<float>(dist/2));
  }

  Size getEdgeValue(const edge e) {
    Size s = sizeResult->getNodeValue(graph->source(e));
    Size t = sizeResult->getNodeValue(graph->target(e));
    Coord tmp(s.getW(),s.getH(),s.getD());
    Coord tmp2(t.getW(),t.getH(),t.getD());
    float sizes=tmp.norm();
    float sizet=tmp2.norm();
    return (Size(sizes/16,sizet/16,sizet/4));
  }

};
/*@}*/
SIZEPLUGIN(AutoSize,"Auto Sizing","Auber","04/05/2001","","1.0")