1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <tulip/TulipPluginHeaders.h>
#include <tulip/StringCollection.h>
using namespace std;
using namespace tlp;
/** \addtogroup metric */
/*@{*/
/**
* \file
* \brief A metric based on the K-core decomposition of a graph.
*
* K-cores were first introduced in:
*
* S. B. Seidman, "Network structure and minimum degree",
* Social Networks 5:269-287, 1983
*
* This is a method of simplifying graph topology to aid in analysis
* and visualization of social networks
*
* (see http://en.wikipedia.org/wiki/K-core for more details)
*
* The K-Cores metric can also be computed according to weighted degrees. See :
*
* C. Giatsidis, D. Thilikos, M. Vazirgiannis, \n
* "Evaluating cooperation in communities with the k-core structure",\n
* "Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM)",\n
* "2011"
*
* \note Use the default parameters to compute simple K-Cores (undirected and unweighted)
*
* <b>HISTORY</b>
*
* - 2006 Version 1.0 by David Auber, LaBRI,
* University Bordeaux I, France
* - 2011 Version 2.0: Add In/Out and Weighted computation features
* by François Queyroi, LaBRI, University Bordeaux I, France
*
* <b>LICENCE</b>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
class KCores:public tlp::DoubleAlgorithm {
public:
PLUGININFORMATION("K-Cores", "David Auber","28/05/2006","Nodes measure<br/>often used to evaluate the structure of social networks.","2.0", "Graph")
KCores(const tlp::PluginContext *context);
~KCores();
bool run();
private:
bool peel(tlp::Graph* subgraph, tlp::NumericProperty* metric,
tlp::DoubleProperty&);
bool peelIn(tlp::Graph* subgraph, tlp::NumericProperty* metric,
tlp::DoubleProperty&);
bool peelOut(tlp::Graph* subgraph, tlp::NumericProperty* metric,
tlp::DoubleProperty&);
};
//========================================================================================
namespace {
const char * paramHelp[] = {
//direction
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "String Collection" ) \
HTML_HELP_DEF( "default", "InOut" ) \
HTML_HELP_BODY() \
"This parameter indicates the direction used to compute K-Cores values." \
HTML_HELP_CLOSE(),
// metric
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "NumericProperty" ) \
HTML_HELP_DEF( "value", "An existing edge metric" ) \
HTML_HELP_BODY() \
"An existing edge metric property"\
HTML_HELP_CLOSE()
};
}
#define DEGREE_TYPE "type"
#define DEGREE_TYPES "InOut;In;Out;"
#define INOUT 0
#define IN 1
#define OUT 2
//========================================================================================
KCores::KCores(const PluginContext *context):DoubleAlgorithm(context) {
addInParameter<StringCollection>(DEGREE_TYPE, paramHelp[0], DEGREE_TYPES);
addInParameter<NumericProperty*>("metric",paramHelp[1],"",false);
addDependency("Degree","1.0");
}
//========================================================================================
KCores::~KCores() {}
//========================================================================================
bool KCores::peel(Graph* subgraph, NumericProperty* metric,
DoubleProperty& wdeg) {
double k= wdeg.getNodeMin();
bool modify = true;
bool onePeel = false;
while (modify) {
modify = false;
node n;
stableForEach(n,subgraph->getNodes()) {
if (wdeg.getNodeValue(n) <= k) { //Remove n and decrease its In/Out-neighbors' degree
result->setNodeValue(n, k);
edge ee;
forEach(ee,subgraph->getInOutEdges(n)) {
node m = subgraph->opposite(ee,n);
wdeg.setNodeValue(m, wdeg.getNodeValue(m)-(metric ? metric->getEdgeDoubleValue(ee) : 1.0));
}
subgraph->delNode(n);
modify = true;
onePeel = true;
}
}
}
return onePeel;
}
//========================================================================================
bool KCores::peelIn(Graph* subgraph, NumericProperty* metric,
DoubleProperty& wdeg) {
double k= wdeg.getNodeMin();
bool modify = true;
bool onePeel = false;
while (modify) {
modify = false;
node n;
stableForEach(n,subgraph->getNodes()) {
if (wdeg.getNodeValue(n) <= k) {//Remove n and decrease its Out-neighbors' degree
result->setNodeValue(n, k);
edge ee;
forEach(ee,subgraph->getOutEdges(n)) {
node m = subgraph->opposite(ee,n);
wdeg.setNodeValue(m, wdeg.getNodeValue(m)- (metric ? metric->getEdgeDoubleValue(ee) : 1.0));
}
subgraph->delNode(n);
modify = true;
onePeel = true;
}
}
}
return onePeel;
}
//========================================================================================
bool KCores::peelOut(Graph* subgraph, NumericProperty* metric,
DoubleProperty& wdeg) {
double k= wdeg.getNodeMin();
bool modify = true;
bool onePeel = false;
while (modify) {
modify = false;
node n;
stableForEach(n,subgraph->getNodes()) {
if (wdeg.getNodeValue(n) <= k) { //Remove n and decrease its In-neighbors' degree
result->setNodeValue(n, k);
edge ee;
forEach(ee,subgraph->getInEdges(n)) {
node m = subgraph->opposite(ee,n);
wdeg.setNodeValue(m, wdeg.getNodeValue(m)- (metric ? metric->getEdgeDoubleValue(ee) : 1.0));
}
subgraph->delNode(n);
modify = true;
onePeel = true;
}
}
}
return onePeel;
}
//========================================================================================
bool KCores::run() {
NumericProperty* metric = NULL;
StringCollection degreeTypes(DEGREE_TYPES);
degreeTypes.setCurrent(0);
if (dataSet!=NULL) {
dataSet->get(DEGREE_TYPE, degreeTypes);
dataSet->get("metric", metric);
}
Graph* subgraph = graph->addCloneSubGraph();
DoubleProperty wdeg(subgraph);
string errMsg="";
subgraph->applyPropertyAlgorithm("Degree",&wdeg,errMsg,pluginProgress,dataSet);
switch(degreeTypes.getCurrent()) {
case INOUT:
while (subgraph->numberOfNodes()>0)
peel(subgraph, metric, wdeg);
break;
case IN:
while (subgraph->numberOfNodes()>0)
peelIn(subgraph, metric, wdeg);
break;
case OUT:
while (subgraph->numberOfNodes()>0)
peelOut(subgraph, metric, wdeg);
break;
}
graph->delSubGraph(subgraph);
return true;
}
//========================================================================================
PLUGIN(KCores)
//========================================================================================
|