File: MCLClustering.cpp

package info (click to toggle)
tulip 4.6.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 139,284 kB
  • ctags: 35,942
  • sloc: cpp: 289,758; ansic: 27,264; python: 1,256; sh: 923; yacc: 522; xml: 337; makefile: 258; php: 66; lex: 55
file content (459 lines) | stat: -rw-r--r-- 11,615 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#include <math.h>
#include <sstream>
#include <string>
#include <list>
#include <map>
#include <tulip/tuliphash.h>
#include <tulip/MutableContainer.h>
#include <tulip/Graph.h>
#include <tulip/TlpTools.h>
#include <tulip/GraphMeasure.h>
#include <tulip/StableIterator.h>
#include <tulip/SimpleTest.h>
#include <tulip/ForEach.h>
#include <tulip/TulipPluginHeaders.h>
#include <tulip/StableIterator.h>

using namespace tlp;
using namespace std;

/** \addtogroup clustering */
/*@{*/
/** \file
* \brief  An implementation of the MCL clustering algorithm
*
* This plugin is an implementation of the MCL algorithm
* first published as:
*
* Stijn van Dongen \n
* PhD Thesis "Graph Clustering by Flow Simulation", \n
* University of Utrecht,\n
* 2000. \n
*
* <b> HISTORY</b>
*
* - 16/09/2011 Version 1.0: Initial release
*
* \author David Auber, Labri, Email : auber@labri.fr
*
*  <b>LICENCE</b>
*
*  This program is free software; you can redistribute it and/or modify
*  it under the terms of the GNU General Public License as published by
*  the Free Software Foundation; either version 2 of the License, or
*  (at your option) any later version.
*
**/
class MCLClustering:public tlp::DoubleAlgorithm {
public:

  PLUGININFORMATION("MCL Clustering", "D. Auber & R. Bourqui","10/10/2005","Nodes partitioning measure of Markov Cluster algorithm<br/>used for community detection.","1.0","Clustering")

  MCLClustering(const tlp::PluginContext *);
  ~MCLClustering();
  bool run();
  void inflate(double r, unsigned int k, node n, bool);
  void pruneK(node n, unsigned int k);
  void pruneT(node n);
  void makeStoc(node n);
  void bfs(node n, double value);
  double connectedComponnent();

  bool equal();
  void init();
  void power(node n);
  edge getEdge(node, node);

  VectorGraph g;
  EdgeProperty<double> inW, outW;
  NodeProperty<node> tlpNodes;
  NodeProperty<double> resultN;
  map< pair<unsigned int, unsigned int>, edge > existEdge;
  MutableContainer<node> nodeMapping;
  MutableContainer<edge> edgeMapping;
  NumericProperty *weights;
  double _r;
  unsigned int _k;
};
/*@}*/

PLUGIN(MCLClustering)

const double epsilon = 1E-9;
//=================================================
edge MCLClustering::getEdge(node src, node tgt) {
  pair<unsigned int, unsigned int> e(src.id, tgt.id);

  if (existEdge.find(e) != existEdge.end())
    return existEdge[e];
  else {
    edge ne = g.addEdge(src, tgt);
    existEdge[e] = ne;
    inW[ne] = 0.;
    outW[ne] = 0.;
    return ne;
  }
}
//=================================================
void MCLClustering::power(node n) {
  edge e1;
  stableForEach(e1, g.getOutEdges(n)) {
    double v1 = inW[e1];

    if (v1 > epsilon) {
      edge e2;
      stableForEach(e2, g.getOutEdges(g.target(e1))) {
        double v2 = inW[e2] * v1;

        if (v2 > epsilon) {
          edge ne = getEdge(n, g.target(e2));
          outW[ne] += v2;
        }
      }
    }
  }
}
//==================================================
void MCLClustering::makeStoc(node n) {
  double sum = 0.;
  edge e;
  forEach(e, g.getOutEdges(n)) {
    sum += outW[e];
  }

  if (sum > 0.) {
    forEach(e, g.getOutEdges(n)) {
      outW[e] = outW[e] / sum;
    }
  }
  else {
    //cout << "ERROR" << endl;
    forEach(e, g.getOutEdges(n)) {
      outW[e] = 1. / double(g.outdeg(n));
    }
  }
}
//==================================================
void MCLClustering::pruneK(node n, unsigned int k) {
  if (g.outdeg(n) < k) return;

  set<double> orderedVal;
  edge e;
  forEach(e, g.getOutEdges(n)) {
    orderedVal.insert(outW[e]);
  }

  set<double>::reverse_iterator it  = orderedVal.rbegin();

  while(--k) ++it;

  double t = *it;
  stableForEach(e, g.getOutEdges(n)) {
    if (outW[e] < t) {
      const std::pair<node, node>& eEnds = g.ends(e);
      pair<unsigned int, unsigned int> edgeM(eEnds.first.id, eEnds.second.id);
      existEdge.erase(edgeM);
      inW[e]  = 0.;
      outW[e] = 0.;
      g.delEdge(e);
    }
  }

}
//==================================================
void MCLClustering::pruneT(node n) {
  double maxV = 0.;
  //double sum = 0.;
  edge   e;
  forEach(e, g.getOutEdges(n)) {
    maxV = std::max(outW[e], maxV);
    //sum += outW[e];
  }
  stableForEach(e, g.getOutEdges(n)) {
    if (outW[e] < maxV / (2. * double(g.outdeg(n) + 1))) {
      //if (outW[e] < epsilon) {
      const std::pair<node, node>& eEnds = g.ends(e);
      pair<unsigned int, unsigned int> edgeM(eEnds.first.id, eEnds.second.id);
      existEdge.erase(edgeM);
      inW[e]  = 0.;
      outW[e] = 0.;
      g.delEdge(e);
    }
  }
}
//=================================================
void MCLClustering::inflate(double r, unsigned int k, node n, bool noprune) {
  edge e;
  double sum  = 0.;
  forEach(e, g.getOutEdges(n)) {
    sum += pow(outW[e], r);
  }

  if (sum > 0.) {
    forEach(e, g.getOutEdges(n)) {
      outW[e] = pow(outW[e], r) / sum;
    }
  }

  if (noprune)
    return;

  pruneK(n, k);
  makeStoc(n);
}
//=================================================
bool MCLClustering::equal() {
  //cout << __PRETTY_FUNCTION__ << endl << flush;
  edge e;
  forEach(e, g.getEdges()) {
    if (fabs(inW[e] - outW[e]) > epsilon)
      return false;
  }
  return true;
}
//=================================================
static const char * paramHelp[] = {
  // number of clusters
  HTML_HELP_OPEN() \
  HTML_HELP_DEF( "type", "unsigned int" ) \
  HTML_HELP_BODY() \
  "Determines the random walk length at each step" \
  HTML_HELP_CLOSE(),
  HTML_HELP_OPEN() \
  HTML_HELP_DEF( "type", "NumericProperty" ) \
  HTML_HELP_BODY() \
  "Edge weights to use" \
  HTML_HELP_CLOSE(),
  HTML_HELP_OPEN() \
  HTML_HELP_DEF( "type", "unsigned int" ) \
  HTML_HELP_BODY() \
  "Determines, for each node, the number of strongest link kept at each iteration" \
  HTML_HELP_CLOSE(),
};
//=================================================
MCLClustering::MCLClustering(const tlp::PluginContext *context):DoubleAlgorithm(context), weights(NULL), _r(2.0), _k(5) {
  addInParameter<double>("inflate", paramHelp[0], "2.", false);
  addInParameter<NumericProperty*>("weights", paramHelp[1], "", false);
  addInParameter<unsigned int>("pruning", paramHelp[2], "5", false);
}
//===================================================================================
MCLClustering::~MCLClustering() {
}
//================================================================================
void MCLClustering::init() {
  node n;
  forEach(n, graph->getNodes()) {
    node newNode = g.addNode();
    nodeMapping.set(n.id, newNode);
    tlpNodes[newNode] = n;
  }
  edge e;
  forEach(e, graph->getEdges()) {
    node src = nodeMapping.get(graph->source(e).id);
    node tgt = nodeMapping.get(graph->target(e).id);
    edge tmp = g.addEdge(src, tgt);
    existEdge[pair<unsigned int, unsigned int>(src.id, tgt.id)] = tmp;
    edgeMapping.set(e.id, tmp);

    if (weights != NULL) {
      inW[tmp] = weights->getEdgeDoubleValue(e);
    }
    else {
      inW[tmp] = 1.0;
    }
  }
  //add reverse edges
  stableForEach(e, g.getEdges()) {
    const std::pair<node, node>& eEnds = g.ends(e);
    edge tmp = g.addEdge(eEnds.second, eEnds.first);
    existEdge[pair<unsigned int, unsigned int>(eEnds.second.id, eEnds.first.id)] = tmp;
    inW[tmp] = inW[e];
  }
  //add loops (Set the maximum of out-edges weights to self-loops weight)
  forEach(n, g.getNodes()) {
    edge tmp = g.addEdge(n, n);
    existEdge[pair<unsigned int, unsigned int>(n.id, n.id)] = tmp;
    edge e;
    double sum = 0.;
    inW[tmp]=1.;

    if(weights!=0) {
      inW[tmp]=0.;
      forEach(e, g.getOutEdges(n)) {
        sum += inW[e];
        inW[tmp] = inW[e] > inW[tmp] ?  inW[e] : inW[tmp];
      }
      sum += inW[tmp];
    }
    else
      sum=double(g.outdeg(n));

    forEach(e, g.getOutEdges(n))
    inW[e] /= sum;
  }

  forEach(e, g.getEdges()) {
    outW[e] = 0.;
  }

}
//================================================================================
void MCLClustering::bfs(node n, double value) {
  deque<node> fifo;
  MutableContainer<bool> flag;
  flag.setAll(false);
  fifo.push_back(n);
  flag.set(n, true);

  while(!fifo.empty()) {
    node n = fifo.front();
    resultN[n] = value;
    fifo.pop_front();
    Iterator<node> *it = g.getInOutNodes(n);

    while (it->hasNext()) {
      node ni = it->next();

      if(!flag.get(ni)) {
        fifo.push_back(ni);
        flag.set(ni, true);
      }
    }

    delete it;
  }
}
//================================================================================
double MCLClustering::connectedComponnent() {
  node n;
  forEach(n, g.getNodes()) {
    resultN[n] = -1.;
  }
  double curVal = 0.;
  forEach(n, g.getNodes()) {
    if (resultN[n] < 0) {
      bfs(n, curVal);
      curVal += 1.;
    }
  }
  return curVal;
}
//================================================================================
struct DegreeSort {
  DegreeSort(VectorGraph &g):g(g) {}
  bool operator()(node a, node b) {
    return (g.deg(a) > g.deg(b));
  }
  VectorGraph &g;
};
//==============================================================================
bool MCLClustering::run() {


  g.alloc(inW);
  g.alloc(outW);
  g.alloc(tlpNodes);

  weights = NULL;
  _r = 2.;
  _k = 5;

  if(dataSet!=0) {
    dataSet->get("weights", weights);
    dataSet->get("inflate", _r);
    dataSet->get("pruning", _k);
  }

  init();

  edge e;
  //output for mcl
  /*
  forEach(e, graph->getEdges()) {
      cout << graph->source(e).id << "\t" << graph->target(e).id << endl;
  }
  */

  int iteration = 15. * log(g.numberOfNodes() + 1);

  while(iteration-- > 0) {
    node n;
    forEach(n, g.getNodes()) {
      power(n);
      // comment the next line to have exact MCL
      inflate(_r, _k,  n, false);
    }
    /* exact MCL should inflate after because we share the same graphs tructure,
    * or we should only remove edges created during the power and delay the
    * deletion of edge that does exist in the previous graph
    * however that impletenation doesn't change the result too much.
    */
    //uncomment that block to have correct MCL

//        forEach(n, g.getNodes()) {
//            inflate(_r, _k,  n, false);
//        }

    EdgeProperty<double> tmp;
    tmp = inW;
    inW = outW;
    outW = tmp;

    if (equal()) break;

    edge e;
    forEach(e, g.getEdges())
    outW[e] = 0.;
  }

  outW = inW;
  node n;
  forEach(n, g.getNodes()) {
    pruneK(n, 1);
  }

  stableForEach(e, g.getEdges()) {
    if (inW[e] < epsilon) {
      g.delEdge(e);
    }
  }



  DegreeSort sortFunc(g);
  g.sortNodes(sortFunc); //sort nodes in decreasing order of their degree
  //node n;
  g.alloc(resultN);
  connectedComponnent();
//    cout << "#clust : " << connectedComponnent() << endl << flush;


  //compute clusters
  //double piv = 0;
  forEach(n, g.getNodes()) {
    //if(g.deg(n) > 1) piv += 1.;

    result->setNodeValue(tlpNodes[n], resultN[n]);
  }
//    cout << "#pivot : " << piv << endl << flush;

  return true;
}