File: ConvolutionClustering.cpp

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (292 lines) | stat: -rw-r--r-- 9,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */

#include "ConvolutionClustering.h"
#include "ConvolutionClusteringSetup.h"

#include <tulip/ForEach.h>

using namespace std;

namespace tlp {
PLUGIN(ConvolutionClustering)

ConvolutionClustering::ConvolutionClustering(PluginContext* context):DoubleAlgorithm(context), metric(NULL) {
  addInParameter<NumericProperty*>("metric",
                                   HTML_HELP_OPEN()     \
                                   HTML_HELP_DEF( "type", "NumericProperty" ) \
                                   HTML_HELP_DEF( "value", "An existing node metric" ) \
                                   HTML_HELP_BODY()     \
                                   "An existing node metric property" \
                                   HTML_HELP_CLOSE(), "viewMetric", false);
}

//convolution function, build a triangular function center in 0 with a width width and a
double g(int k,double width,double amplitude) {
  double slope=amplitude/width;

  if ((k<=-width) || (k>=width))
    return 0;
  else {
    if (k<0)
      return ((double)k*slope+amplitude); //partie croissante du signal triangulaire
    else
      return ((double)-k*slope+amplitude); //partie d�croissante du signal triangulaire
  }
}
//================================================================================
int getInterval(int d,const vector<int> &ranges) {
  for (unsigned int i=0; i<ranges.size()-1; ++i) {
    if ((d>=ranges[i]) && (d<ranges[i+1])) return i;
  }

  return ranges.size()-2;
}
//================================================================================
void ConvolutionClustering::setParameters(int histosize,int threshold,int width) {
  this->histosize=histosize;
  this->threshold=threshold;
  this->width=width;
}
//================================================================================
void ConvolutionClustering::getParameters(int &histosize,int &threshold,int &width) {
  histosize=this->histosize;
  threshold=this->threshold;
  width=this->width;
}
//================================================================================
list<int> ConvolutionClustering::getLocalMinimum() {
  vector<double> &discretHisto = *getHistogram();
  list<int> localMinimum;
  localMinimum.push_back(0);
  double previous = discretHisto[0];
  double current = discretHisto[1];
  bool slopeSens = !(previous > current); //false descent

  for (unsigned int i = 1; i < discretHisto.size(); ++i) {
    current = discretHisto[i];
    bool newSlopeSens = !(previous > current);

    if (newSlopeSens != slopeSens) {
      //new Local minimum
      if (slopeSens==false) {
        int local = localMinimum.back();

        if ((int) i - local < width/2) {
          localMinimum.pop_back();
          localMinimum.push_back((i+local)/2);
        }
        else
          localMinimum.push_back(i);
      }

      slopeSens=newSlopeSens;
    }

    previous = current;
  }

  return localMinimum;
}
//================================================================================
void ConvolutionClustering::autoSetParameter() {

  map<double,int> histo;
  Iterator<node> *itN=graph->getNodes();

  while (itN->hasNext()) {
    node itn=itN->next();
    double tmp = metric->getNodeDoubleValue(itn);

    if (histo.find(tmp)==histo.end())
      histo[tmp]=1;
    else
      histo[tmp]+=1;
  }

  delete itN;

  if (histo.empty()) return;

  //===============================================================================
  //Find good step for discretization
  //We take the minimum interval between to bar in the continue histogram
  double deltaXMin=-1;
  double deltaXMax=0;
  double deltaSum=0;
  map<double,int>::iterator itMap=histo.begin();
  double lastValue=(*itMap).first;
  ++itMap;

  for (; itMap!=histo.end(); ++itMap) {
    double delta = itMap->first-lastValue;
    deltaSum+=delta;

    if (delta > deltaXMax)
      deltaXMax = delta;
    else if (delta < deltaXMin ||  deltaXMin < 0 )
      deltaXMin = delta;

    lastValue=(*itMap).first;
  }

  histosize=(int)((metric->getNodeDoubleMax()-metric->getNodeDoubleMin())/deltaXMin);

  if (histosize > 16384) histosize = 16384; //histosize = histosize <? 16384;

  if (histosize < 64) histosize = 64; //histosize = histosize >? 64;

  //===============================================================================
  //Find good with for the convolution function
  //We take the maximum width of the biggest hole
  //width=(int)(deltaXMax*histosize/(metric->getNodeMax()-metric->getNodeMin()));
  //width=(int)(deltaXMin*histosize/(metric->getNodeMax()-metric->getNodeMin()));
  deltaSum /= histo.size();
  width=(int)(deltaSum*histosize/(metric->getNodeDoubleMax()-metric->getNodeDoubleMin()));
  //===============================================================================
  //Find good threshold
  //make the average of all local minimum
  vector<double> &discretHisto=*getHistogram();
  double sum=0;
  int nbElement=1;

  if (discretHisto.size() > 1) {
    double previous = discretHisto[0];
    double current = discretHisto[1];
    bool slopeSens = !(previous > current);

    for (unsigned int i=1; i<discretHisto.size(); ++i) {
      double current = discretHisto[i];
      bool newSlopeSens = !(previous > current);

      if (newSlopeSens != slopeSens) {
        //new Local minimum
        nbElement++;
        sum+=(current + previous)/ 2;
        slopeSens = newSlopeSens;
      }

      previous = current;
    }
  }

  threshold=(int)(sum/nbElement);
}
//================================================================================
vector<double> *ConvolutionClustering::getHistogram() {
  //building of the histogram of values
  histogramOfValues.clear();
  double minVal = metric->getNodeDoubleMin();
  double maxMinRange = metric->getNodeDoubleMax() - minVal;

  node n;
  forEach(n, graph->getNodes()) {
    int tmp=(int)((metric->getNodeDoubleValue(n) - minVal) * (double)histosize /
                  maxMinRange);

    if (histogramOfValues.find(tmp) == histogramOfValues.end())
      histogramOfValues[tmp]=1;
    else
      histogramOfValues[tmp]+=1;
  }

  //Apply the convolution on the histogram of values
  //Convolution parameter, this version work only with integer
  smoothHistogram.clear();
  smoothHistogram.resize(histosize);

  for (int pos=0; pos<histosize; ++pos)
    smoothHistogram[pos]=0;

  map<int,int>::iterator itMap;

  for (itMap=histogramOfValues.begin(); itMap!=histogramOfValues.end(); ++itMap) {
    double value=itMap->second;
    int index=itMap->first;

    for (int i=-width; i<=width; ++i) {
      if ((index+i)>=0 && (index+i)<histosize)
        smoothHistogram[index+i] += value*g(i,width,1);
    }
  }

  return &smoothHistogram;
}
//================================================================================
void ConvolutionClustering::getClusters(const std::vector<int> &ranges) {
  node n;
  double minVal = metric->getNodeDoubleMin();
  double maxMinRange = metric->getNodeDoubleMax() - minVal;
  forEach(n,graph->getNodes()) {
    int tmp = getInterval((int)((metric->getNodeDoubleValue(n) - minVal)*(double)histosize / maxMinRange), ranges);
    result->setNodeValue(n,tmp);
  }
}
//================================================================================
bool ConvolutionClustering::run() {
  histosize=128;

  if (dataSet != NULL)
    dataSet->get("metric", metric);

  if (metric == NULL)
    metric=graph->getProperty<DoubleProperty>("viewMetric");

  autoSetParameter();
  getHistogram();
  ConvolutionClusteringSetup *mysetup = new ConvolutionClusteringSetup(this);
  bool setupResult = mysetup->exec();
  delete mysetup;

  if (setupResult==QDialog::Rejected) {
    pluginProgress->setError("user cancellation");
    return false;
  }

  vector<int> ranges;
  ranges.push_back(0);
  list<int> localMinimum = getLocalMinimum();

  while (!localMinimum.empty()) {
    ranges.push_back(localMinimum.front());
    localMinimum.pop_front();
  }

  ranges.push_back(histosize);
  //Ensure that there is elements inside each intervals.
  getClusters(ranges);
  return true;
}


bool ConvolutionClustering::check(std::string& errorMsg) {
  if (dataSet != NULL)
    dataSet->get("metric", metric);

  if (metric == NULL)
    metric=graph->getProperty<DoubleProperty>("viewMetric");

  if (metric->getNodeDoubleMax() == metric->getNodeDoubleMin()) {
    errorMsg = "All metric values are the same";
    return false;
  }

  return true;
}
}