File: ConvolutionClustering.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (68 lines) | stat: -rw-r--r-- 1,922 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#ifndef _ConvolutionClustering_H
#define _ConvolutionClustering_H

#include <vector>

#include <tulip/TulipPluginHeaders.h>


/** This plugin allow the discretization and the filtering of the distribution of
* a node metric using convolution.
*
* A detailled usage of this procedure is detailled in :
*
* D. Auber, M. Delest and Y. Chiricota \n
* "Strahler based graph clustering using convolution",\n
* Published by the IEEE Computer Society, \n
* 2004.
*
*/

namespace tlp {

class ConvolutionClustering:public tlp::DoubleAlgorithm {
public:
  PLUGININFORMATION("Convolution","David Auber","14/08/2001","Discretization and filtering of the distribution of a node metric using a convolution.","2.1","Clustering")
  ConvolutionClustering(tlp::PluginContext* context);
  bool run();
  bool check(std::string&);
  std::vector<double> *getHistogram();
  void setParameters(int histosize,int threshold,int width);
  void getParameters(int &histosize,int &threshold,int &width);
  void autoSetParameter();
  std::list<int> getLocalMinimum();
private:
  void getClusters(const std::vector<int>& ranges);
  std::vector<double> smoothHistogram;
  std::map<int,int> histogramOfValues;
  int histosize,threshold,width;
  tlp::NumericProperty *metric;
};

}


#endif