File: PairingHeap.cpp

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (339 lines) | stat: -rw-r--r-- 7,596 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/**
 * \brief Pairing heap datastructure implementation
 *
 * Based on example code in "Data structures and Algorithm Analysis in C++"
 * by Mark Allen Weiss, used and released under the LGPL by permission
 * of the author.
 *
 * No promises about correctness.  Use at your own risk!
 *
 * Authors:
 *   Mark Allen Weiss
 *   Tim Dwyer <tgdwyer@gmail.com>
 *
 * Copyright (C) 2005 Authors
 *
 * Released under GNU LGPL.  Read the file 'COPYING' for more information.
 */

#include <vector>
#include <list>
#include "dsexceptions.h"
#include "PairingHeap.h"

#ifndef PAIRING_HEAP_CPP
#define PAIRING_HEAP_CPP
using namespace std;

/**
* Construct the pairing heap.
*/
template <class T>
PairingHeap<T>::PairingHeap( bool (*lessThan)(T const &lhs, T const &rhs) ) {
  root = NULL;
  counter=0;
  this->lessThan=lessThan;
}


/**
* Copy constructor
*/
template <class T>
PairingHeap<T>::PairingHeap( const PairingHeap<T> & rhs ) {
  root = NULL;
  counter=rhs->size();
  *this = rhs;
}

/**
* Destroy the leftist heap.
*/
template <class T>
PairingHeap<T>::~PairingHeap( ) {
  makeEmpty( );
}

/**
* Insert item x into the priority queue, maintaining heap order.
* Return a pointer to the node containing the new item.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::insert( const T & x ) {
  PairNode<T> *newNode = new PairNode<T>( x );

  if( root == NULL )
    root = newNode;
  else
    compareAndLink( root, newNode );

  counter++;
  return newNode;
}
template <class T>
int PairingHeap<T>::size() {
  return counter;
}
/**
* Find the smallest item in the priority queue.
* Return the smallest item, or throw Underflow if empty.
*/
template <class T>
const T & PairingHeap<T>::findMin( ) const {
  if( isEmpty( ) )
    throw Underflow( );

  return root->element;
}
/**
 * Remove the smallest item from the priority queue.
 * Throws Underflow if empty.
 */
template <class T>
void PairingHeap<T>::deleteMin( ) {
  if( isEmpty( ) )
    throw Underflow( );

  PairNode<T> *oldRoot = root;

  if( root->leftChild == NULL )
    root = NULL;
  else
    root = combineSiblings( root->leftChild );

  counter--;
  delete oldRoot;
}

/**
* Test if the priority queue is logically empty.
* Returns true if empty, false otherwise.
*/
template <class T>
bool PairingHeap<T>::isEmpty( ) const {
  return root == NULL;
}

/**
* Test if the priority queue is logically full.
* Returns false in this implementation.
*/
template <class T>
bool PairingHeap<T>::isFull( ) const {
  return false;
}

/**
* Make the priority queue logically empty.
*/
template <class T>
void PairingHeap<T>::makeEmpty( ) {
  reclaimMemory( root );
  root = NULL;
}

/**
* Deep copy.
*/
template <class T>
const PairingHeap<T> &
PairingHeap<T>::operator=( const PairingHeap<T> & rhs ) {
  if( this != &rhs ) {
    makeEmpty( );
    root = clone( rhs.root );
  }

  return *this;
}

/**
* Internal method to make the tree empty.
* WARNING: This is prone to running out of stack space.
*/
template <class T>
void PairingHeap<T>::reclaimMemory( PairNode<T> * t ) const {
  if( t != NULL ) {
    reclaimMemory( t->leftChild );
    reclaimMemory( t->nextSibling );
    delete t;
  }
}

/**
* Change the value of the item stored in the pairing heap.
* Does nothing if newVal is larger than currently stored value.
* p points to a node returned by insert.
* newVal is the new value, which must be smaller
*    than the currently stored value.
*/
template <class T>
void PairingHeap<T>::decreaseKey( PairNode<T> *p,
                                  const T & newVal ) {
  if( lessThan(p->element,newVal) )
    return;    // newVal cannot be bigger

  p->element = newVal;

  if( p != root ) {
    if( p->nextSibling != NULL )
      p->nextSibling->prev = p->prev;

    if( p->prev->leftChild == p )
      p->prev->leftChild = p->nextSibling;
    else
      p->prev->nextSibling = p->nextSibling;

    p->nextSibling = NULL;
    compareAndLink( root, p );
  }
}

/**
* Internal method that is the basic operation to maintain order.
* Links first and second together to satisfy heap order.
* first is root of tree 1, which may not be NULL.
*    first->nextSibling MUST be NULL on entry.
* second is root of tree 2, which may be NULL.
* first becomes the result of the tree merge.
*/
template <class T>
void PairingHeap<T>::
compareAndLink( PairNode<T> * & first,
                PairNode<T> *second ) const {
  if( second == NULL )
    return;

  if( lessThan(second->element,first->element) ) {
    // Attach first as leftmost child of second
    second->prev = first->prev;
    first->prev = second;
    first->nextSibling = second->leftChild;

    if( first->nextSibling != NULL )
      first->nextSibling->prev = first;

    second->leftChild = first;
    first = second;
  }
  else {
    // Attach second as leftmost child of first
    second->prev = first;
    first->nextSibling = second->nextSibling;

    if( first->nextSibling != NULL )
      first->nextSibling->prev = first;

    second->nextSibling = first->leftChild;

    if( second->nextSibling != NULL )
      second->nextSibling->prev = second;

    first->leftChild = second;
  }
}

/**
* Internal method that implements two-pass merging.
* firstSibling the root of the conglomerate;
*     assumed not NULL.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::combineSiblings( PairNode<T> *firstSibling ) const {
  if( firstSibling->nextSibling == NULL )
    return firstSibling;

  // Allocate the array
  static vector<PairNode<T> *> treeArray( 5 );

  // Store the subtrees in an array
  int numSiblings = 0;

  for( ; firstSibling != NULL; numSiblings++ ) {
    if( numSiblings == (int)treeArray.size( ) )
      treeArray.resize( numSiblings * 2 );

    treeArray[ numSiblings ] = firstSibling;
    firstSibling->prev->nextSibling = NULL;  // break links
    firstSibling = firstSibling->nextSibling;
  }

  if( numSiblings == (int)treeArray.size( ) )
    treeArray.resize( numSiblings + 1 );

  treeArray[ numSiblings ] = NULL;

  // Combine subtrees two at a time, going left to right
  int i = 0;

  for( ; i + 1 < numSiblings; i += 2 )
    compareAndLink( treeArray[ i ], treeArray[ i + 1 ] );

  int j = i - 2;

  // j has the result of last compareAndLink.
  // If an odd number of trees, get the last one.
  if( j == numSiblings - 3 )
    compareAndLink( treeArray[ j ], treeArray[ j + 2 ] );

  // Now go right to left, merging last tree with
  // next to last. The result becomes the new last.
  for( ; j >= 2; j -= 2 )
    compareAndLink( treeArray[ j - 2 ], treeArray[ j ] );

  return treeArray[ 0 ];
}

/**
* Internal method to clone subtree.
* WARNING: This is prone to running out of stack space.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::clone( PairNode<T> * t ) const {
  if( t == NULL )
    return NULL;
  else {
    PairNode<T> *p = new PairNode<T>( t->element );

    if( ( p->leftChild = clone( t->leftChild ) ) != NULL )
      p->leftChild->prev = p;

    if( ( p->nextSibling = clone( t->nextSibling ) ) != NULL )
      p->nextSibling->prev = p;

    return p;
  }
}
template <class T>
ostream& operator <<(ostream &os, const PairingHeap<T> &b) {
  os<<"Heap:";

  if (b.root != NULL) {
    PairNode<T> *r = b.root;
    list<PairNode<T>*> q;
    q.push_back(r);

    while (!q.empty()) {
      r = q.front();
      q.pop_front();

      if (r->leftChild != NULL) {
        os << *r->element << ">";
        PairNode<T> *c = r->leftChild;

        while (c != NULL) {
          q.push_back(c);
          os << "," << *c->element;
          c = c->nextSibling;
        }

        os << "|";
      }
    }
  }

  return os;
}
#endif