1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
/**
* \brief Pairing heap datastructure implementation
*
* Based on example code in "Data structures and Algorithm Analysis in C++"
* by Mark Allen Weiss, used and released under the LGPL by permission
* of the author.
*
* No promises about correctness. Use at your own risk!
*
* Authors:
* Mark Allen Weiss
* Tim Dwyer <tgdwyer@gmail.com>
*
* Copyright (C) 2005 Authors
*
* Released under GNU LGPL. Read the file 'COPYING' for more information.
*/
#include <vector>
#include <list>
#include "dsexceptions.h"
#include "PairingHeap.h"
#ifndef PAIRING_HEAP_CPP
#define PAIRING_HEAP_CPP
using namespace std;
/**
* Construct the pairing heap.
*/
template <class T>
PairingHeap<T>::PairingHeap( bool (*lessThan)(T const &lhs, T const &rhs) ) {
root = NULL;
counter=0;
this->lessThan=lessThan;
}
/**
* Copy constructor
*/
template <class T>
PairingHeap<T>::PairingHeap( const PairingHeap<T> & rhs ) {
root = NULL;
counter=rhs->size();
*this = rhs;
}
/**
* Destroy the leftist heap.
*/
template <class T>
PairingHeap<T>::~PairingHeap( ) {
makeEmpty( );
}
/**
* Insert item x into the priority queue, maintaining heap order.
* Return a pointer to the node containing the new item.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::insert( const T & x ) {
PairNode<T> *newNode = new PairNode<T>( x );
if( root == NULL )
root = newNode;
else
compareAndLink( root, newNode );
counter++;
return newNode;
}
template <class T>
int PairingHeap<T>::size() {
return counter;
}
/**
* Find the smallest item in the priority queue.
* Return the smallest item, or throw Underflow if empty.
*/
template <class T>
const T & PairingHeap<T>::findMin( ) const {
if( isEmpty( ) )
throw Underflow( );
return root->element;
}
/**
* Remove the smallest item from the priority queue.
* Throws Underflow if empty.
*/
template <class T>
void PairingHeap<T>::deleteMin( ) {
if( isEmpty( ) )
throw Underflow( );
PairNode<T> *oldRoot = root;
if( root->leftChild == NULL )
root = NULL;
else
root = combineSiblings( root->leftChild );
counter--;
delete oldRoot;
}
/**
* Test if the priority queue is logically empty.
* Returns true if empty, false otherwise.
*/
template <class T>
bool PairingHeap<T>::isEmpty( ) const {
return root == NULL;
}
/**
* Test if the priority queue is logically full.
* Returns false in this implementation.
*/
template <class T>
bool PairingHeap<T>::isFull( ) const {
return false;
}
/**
* Make the priority queue logically empty.
*/
template <class T>
void PairingHeap<T>::makeEmpty( ) {
reclaimMemory( root );
root = NULL;
}
/**
* Deep copy.
*/
template <class T>
const PairingHeap<T> &
PairingHeap<T>::operator=( const PairingHeap<T> & rhs ) {
if( this != &rhs ) {
makeEmpty( );
root = clone( rhs.root );
}
return *this;
}
/**
* Internal method to make the tree empty.
* WARNING: This is prone to running out of stack space.
*/
template <class T>
void PairingHeap<T>::reclaimMemory( PairNode<T> * t ) const {
if( t != NULL ) {
reclaimMemory( t->leftChild );
reclaimMemory( t->nextSibling );
delete t;
}
}
/**
* Change the value of the item stored in the pairing heap.
* Does nothing if newVal is larger than currently stored value.
* p points to a node returned by insert.
* newVal is the new value, which must be smaller
* than the currently stored value.
*/
template <class T>
void PairingHeap<T>::decreaseKey( PairNode<T> *p,
const T & newVal ) {
if( lessThan(p->element,newVal) )
return; // newVal cannot be bigger
p->element = newVal;
if( p != root ) {
if( p->nextSibling != NULL )
p->nextSibling->prev = p->prev;
if( p->prev->leftChild == p )
p->prev->leftChild = p->nextSibling;
else
p->prev->nextSibling = p->nextSibling;
p->nextSibling = NULL;
compareAndLink( root, p );
}
}
/**
* Internal method that is the basic operation to maintain order.
* Links first and second together to satisfy heap order.
* first is root of tree 1, which may not be NULL.
* first->nextSibling MUST be NULL on entry.
* second is root of tree 2, which may be NULL.
* first becomes the result of the tree merge.
*/
template <class T>
void PairingHeap<T>::
compareAndLink( PairNode<T> * & first,
PairNode<T> *second ) const {
if( second == NULL )
return;
if( lessThan(second->element,first->element) ) {
// Attach first as leftmost child of second
second->prev = first->prev;
first->prev = second;
first->nextSibling = second->leftChild;
if( first->nextSibling != NULL )
first->nextSibling->prev = first;
second->leftChild = first;
first = second;
}
else {
// Attach second as leftmost child of first
second->prev = first;
first->nextSibling = second->nextSibling;
if( first->nextSibling != NULL )
first->nextSibling->prev = first;
second->nextSibling = first->leftChild;
if( second->nextSibling != NULL )
second->nextSibling->prev = second;
first->leftChild = second;
}
}
/**
* Internal method that implements two-pass merging.
* firstSibling the root of the conglomerate;
* assumed not NULL.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::combineSiblings( PairNode<T> *firstSibling ) const {
if( firstSibling->nextSibling == NULL )
return firstSibling;
// Allocate the array
static vector<PairNode<T> *> treeArray( 5 );
// Store the subtrees in an array
int numSiblings = 0;
for( ; firstSibling != NULL; numSiblings++ ) {
if( numSiblings == (int)treeArray.size( ) )
treeArray.resize( numSiblings * 2 );
treeArray[ numSiblings ] = firstSibling;
firstSibling->prev->nextSibling = NULL; // break links
firstSibling = firstSibling->nextSibling;
}
if( numSiblings == (int)treeArray.size( ) )
treeArray.resize( numSiblings + 1 );
treeArray[ numSiblings ] = NULL;
// Combine subtrees two at a time, going left to right
int i = 0;
for( ; i + 1 < numSiblings; i += 2 )
compareAndLink( treeArray[ i ], treeArray[ i + 1 ] );
int j = i - 2;
// j has the result of last compareAndLink.
// If an odd number of trees, get the last one.
if( j == numSiblings - 3 )
compareAndLink( treeArray[ j ], treeArray[ j + 2 ] );
// Now go right to left, merging last tree with
// next to last. The result becomes the new last.
for( ; j >= 2; j -= 2 )
compareAndLink( treeArray[ j - 2 ], treeArray[ j ] );
return treeArray[ 0 ];
}
/**
* Internal method to clone subtree.
* WARNING: This is prone to running out of stack space.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::clone( PairNode<T> * t ) const {
if( t == NULL )
return NULL;
else {
PairNode<T> *p = new PairNode<T>( t->element );
if( ( p->leftChild = clone( t->leftChild ) ) != NULL )
p->leftChild->prev = p;
if( ( p->nextSibling = clone( t->nextSibling ) ) != NULL )
p->nextSibling->prev = p;
return p;
}
}
template <class T>
ostream& operator <<(ostream &os, const PairingHeap<T> &b) {
os<<"Heap:";
if (b.root != NULL) {
PairNode<T> *r = b.root;
list<PairNode<T>*> q;
q.push_back(r);
while (!q.empty()) {
r = q.front();
q.pop_front();
if (r->leftChild != NULL) {
os << *r->element << ">";
PairNode<T> *c = r->leftChild;
while (c != NULL) {
q.push_back(c);
os << "," << *c->element;
c = c->nextSibling;
}
os << "|";
}
}
}
return os;
}
#endif
|