File: LinLogLayout.cpp

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (908 lines) | stat: -rw-r--r-- 24,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#include "LinLogLayout.h"

LinLogLayout::LinLogLayout (tlp::Graph* _graph,
                            tlp::PluginProgress* _pluginProgress):
  edgeWeight(NULL), layoutResult(NULL), linLogWeight(NULL), skipNodes(NULL),
  graph(_graph), pluginProgress(_pluginProgress), _dim(2), _nbNodes(0) {

  if (_graph == NULL)
    std::cerr<<"graph is Null\n";

  useOctTree = true;

  /** Exponent of the Euclidean distance in the repulsion energy. */
  repuExponent = 0.0;
  /** Exponent of the Euclidean distance in the attraction energy. */
  attrExponent = 1.0;
  /** Factor for the gravitation energy = attraction to the barycenter.
      Set to 0.0 for no gravitation. */
  gravFactor = 0.9;
  /** Factor for repulsion energy. */
  repuFactor = 0.0;
  max_iter = 100;
}

LinLogLayout::~LinLogLayout () {
  if(layoutResult)
    delete layoutResult;

  if(linLogWeight)
    delete linLogWeight;
}

bool LinLogLayout::initAlgo (tlp::LayoutProperty* _layout,
                             tlp::NumericProperty* _weight,
                             double _attrExponent,
                             double _repuExponent,
                             double _gravFactor,
                             unsigned int _max_iter,
                             bool _is3D,
                             bool _useOctTree,
                             tlp::BooleanProperty* _skipNodes) {
  //initializes with the current layout,
  //we might want to initialize it with a random layout too, not in this class
  layoutResult = _layout;
  skipNodes = _skipNodes;

  //initializes the weight
  edgeWeight = _weight;
  initWeights();

  //initializes the algorithm properties
  attrExponent = _attrExponent;
  repuExponent = _repuExponent;
  gravFactor = _gravFactor;
  useOctTree = _useOctTree;



  /* Handle parameters */
  _dim = (_is3D) ? 3 : 2;

  _nbNodes = graph->numberOfNodes();

  if (layoutResult == NULL) {
    std::cerr<<"layout result is null\n";
    return false;
  }

  max_iter = _max_iter;

  if (max_iter == 0)
    max_iter = 100;

  return true;
}

bool LinLogLayout::startAlgo () {
  return useOctTree ? minimizeEnergy (max_iter) :
         minimizeEnergyNoTree(max_iter);
}

/**
 * Computes values for the factors of the repulsion and gravitation energy,
 * <code>repuFactor</code> and <code>gravFactor</code>.
 * Chooses <code>repuFactor</code> such that the maximum distances
 * in the resulting layout approximate (very) roughly the square root
 * of the sum of the repuWeights, which is appropriate when each graph node
 * is visualized as a geometric object whose area is the node's repuWeight.
 */
void LinLogLayout::initEnergyFactors () {
  node u;
  double repuSum = 0.0;
  double attrSum = 0.0;

  forEach(u, graph->getNodes()) {
    double u_weight = linLogWeight->getNodeValue(u);
    repuSum += u_weight;
    edge e;
    forEach(e,  graph->getInOutEdges(u)) {
      double edgeweight = linLogWeight->getEdgeValue(e);
      attrSum += edgeweight;
    }
  }

  if (repuSum > 0.0 && attrSum > 0.0) {
    double density = attrSum / repuSum / repuSum;
    repuFactor = density * pow(repuSum, 0.5*(attrExponent-repuExponent));
    gravFactor = density * repuSum * pow(gravFactor, attrExponent-repuExponent);
  }
  else
    repuFactor = 1.0;
}


/**
 * Returns the total energy of a node.
 * @param node  u
 * @return total energy of the specified node
 */
double LinLogLayout::getEnergy (node u) {
  return getRepulsionEnergy (u)
         + getAttractionEnergy (u)
         + getGravitationEnergy (u);
}


double LinLogLayout::getEnergy (node u, OctTree* tree) {
  return getRepulsionEnergy (u, tree)
         + getAttractionEnergy (u)
         + getGravitationEnergy (u);
}

/**
 * Returns the repulsion energy of a node.
 * @param node  repulsing node
 * @return repulsion energy of the specified node
 */
double LinLogLayout::getRepulsionEnergy (node u) {
  double u_weight = linLogWeight->getNodeValue(u);

  if (u_weight == 0.0) return 0.0;

  const Coord& u_layout = layoutResult->getNodeValue(u);
  double energy = 0.0;
  node v;
  forEach(v, graph->getNodes()) {
    double v_weight = linLogWeight->getNodeValue(v);

    if (v == u || v_weight == 0.0)
      continue;

    double dist = getDist(u_layout, layoutResult->getNodeValue(v));

    if (repuExponent == 0.0) {
      energy -= repuFactor * u_weight * v_weight
                * log(dist);
    }
    else {
      energy -= repuFactor * u_weight * v_weight
                * pow(dist, repuExponent) / repuExponent;
    }
  }

  return energy;
}

double LinLogLayout::getRepulsionEnergy (node u, OctTree* tree) {
  if (tree == NULL)
    return 0.0;

  node treeNode = tree->getNode();

  if (treeNode == u)
    return 0.0;

  double u_weight = linLogWeight->getNodeValue(u);

  if (u_weight == 0.0) return 0.0;

  double dist = getDist(layoutResult->getNodeValue(u), tree->position);

  if (tree->childCount > 0 && dist < 2.0 * tree->width()) {
    double energy = 0.0;

    for (unsigned int i = 0; i < tree->childCount; ++i)
      energy += getRepulsionEnergy(u, (tree->_children)[i]);

    return energy;
  }

  if (dist == 0.0) return 0.0;

  if (repuExponent == 0.0) {
    return -repuFactor * u_weight * tree->weight
           * log(dist);
  }
  else {
    return -repuFactor * u_weight * tree->weight
           * pow(dist, repuExponent) / repuExponent;
  }
}


/**
 * Returns the attraction energy of a node.
 * @param node  attracting node
 * @return attraction energy of the specified node
 */
double LinLogLayout::getAttractionEnergy (node u) {
  double energy = 0.0;
  const Coord& u_layout = layoutResult->getNodeValue(u);
  edge e;
  forEach(e,  graph->getInOutEdges(u)) {
    node v = graph->opposite(e, u);
    double dist = getDist(u_layout,
                          layoutResult->getNodeValue(v));
    double edgeweight = linLogWeight->getEdgeValue(e);

    if (attrExponent == 0.0)
      energy += edgeweight * log(dist);
    else
      energy += edgeweight * pow(dist, attrExponent) / attrExponent;
  }

  return energy;
}


/**
 * Returns the gravitation energy of a node.
 * @param node  gravitating node
 * @return gravitation energy of the specified node
 */
double LinLogLayout::getGravitationEnergy (node u) {
  double u_weight = linLogWeight->getNodeValue(u);

  double dist = getDist(layoutResult->getNodeValue(u), baryCenter);

  if (attrExponent == 0.0)
    return gravFactor * u_weight * log(dist);
  else
    return gravFactor * u_weight * pow(dist, attrExponent) / attrExponent;
}

/**
 * Returns the Euclidean distance between the positions pos1 and pos2.
 * @return Euclidean distance between the positions pos1 and pos2
 */
double LinLogLayout::getDist (const Coord& pos1, const Coord& pos2) {
  double dist = 0.0;

  for (unsigned int d = 0; d < _dim; ++d) {
    double diff = pos1[d] - pos2[d];
    dist += diff * diff;
  }

  return sqrt(dist);
}


double LinLogLayout::getDistForComparison (const Coord& pos1,
    const Coord& pos2) {
  double dist = 0.0;

  for (unsigned int d = 0; d < _dim; ++d) {
    double diff = pos1[d] - pos2[d];
    dist += diff * diff;
  }

  return dist;
}


/**
 * Computes the direction of the repulsion force on a node.
 * @param  node  repulsing node
 * @param  dir   direction of the repulsion force acting on the node
 *         is added to this variable (output parameter)
 * @return approximate second derivation of the repulsion energy
 */
double LinLogLayout::addRepulsionDir (node u, double* dir) {
  double u_weight = linLogWeight->getNodeValue(u);

  if (u_weight == 0.0)
    return 0.0;

  const Coord& position= layoutResult->getNodeValue(u);

  double dir2 = 0.0;
  node v;
  forEach(v, graph->getNodes()) {
    double v_weight = linLogWeight->getNodeValue(v);

    if (v == u|| v_weight == 0.0)
      continue;

    const Coord& position2 = layoutResult->getNodeValue(v);

    double dist = getDist(position, position2);

    if (dist == 0.0) continue;

    double tmp = repuFactor * u_weight * v_weight
                 * pow(dist, repuExponent-2);

    dir2 += tmp * fabs(repuExponent-1);

    for (unsigned int d = 0; d < _dim; ++d)
      dir[d] -= (position2[d] - position[d]) * tmp;
  }
  return dir2;
}

double LinLogLayout::addRepulsionDir (node u, double* dir, OctTree* tree) {
  if(tree==NULL || u == (tree->node))
    return 0.0;

  double u_weight = linLogWeight->getNodeValue(u);

  if (u_weight == 0.0)
    return 0.0;

  const Coord& position = layoutResult->getNodeValue(u);

  double dist = getDist(position, tree->position);

  if (dist == 0.0) return 0.0;

  if (tree->childCount > 0 && dist < 2.0 * tree->width()) {
    double dir2 = 0.0;

    for (unsigned int i = 0; i < tree->childCount; ++i) {
      dir2 += addRepulsionDir(u, dir, (tree->_children)[i]);
    }

    return dir2;
  }

  double tmp = repuFactor * u_weight * tree->weight
               * pow(dist, repuExponent-2);

  for (unsigned int d = 0; d < _dim; ++d)
    dir[d] -= (tree->position[d] - position[d]) * tmp;

  return tmp * fabs(repuExponent-1);
}

/**
 * Computes the direction of the attraction force on the a node.
 * @param  node  attracting node
 * @param  dir   direction of the attraction force acting on the node
 *         is added to this variable (output parameter)
 * @return approximate second derivation of the attraction energy
 */
double LinLogLayout::addAttractionDir (node u, double* dir) {
  double dir2 = 0.0;

  const Coord& position = layoutResult->getNodeValue(u);

  edge e;
  forEach(e,  graph->getInOutEdges(u)) {
    node v = graph->opposite(e, u);
    const Coord& position2 = layoutResult->getNodeValue(v);
    double dist = getDist(position, position2);

    if (dist == 0.0)
      continue;

    double edgeweight = linLogWeight->getEdgeValue(e);
    double tmp = edgeweight * pow(dist, attrExponent-2);

    dir2 += tmp * fabs(attrExponent-1);

    for (unsigned int d = 0; d < _dim; ++d)
      dir[d] += (position2[d] - position[d]) * tmp;

  }

  return dir2;
}

/**
 * Computes the direction of the gravitation force on the a node.
 * @param  node  gravitating node
 * @param  dir   direction of the gravitation force acting on the node
 *         is added to this variable (output parameter)
 * @return approximate second derivation of the gravitation energy
 */
double LinLogLayout::addGravitationDir(node u, double* dir) {
  const Coord& position = layoutResult->getNodeValue(u);

  double dist = getDist(position, baryCenter);

  double u_weight = linLogWeight->getNodeValue(u);

  double tmp = gravFactor * repuFactor * u_weight * pow(dist, attrExponent-2);

  for (unsigned int d = 0; d < _dim; ++d) {
    dir[d] += (baryCenter[d] - position[d]) * tmp;
  }

  return tmp * fabs(attrExponent-1.0);
}


/**
 * Computes the direction of the total force acting on a node.
 * @param  node  node
 * @param  dir   direction of the total force acting on the node
 *               (output parameter)
 */
void LinLogLayout::getDirection (node u, double* dir) {

  for (unsigned int d=0; d<_dim; ++d)
    dir[d] = 0.0;

  double dir2 = addRepulsionDir(u, dir);
  dir2 += addAttractionDir(u, dir);
  dir2 += addGravitationDir(u, dir);

  const Coord& position = layoutResult->getNodeValue(u);

  // compute average Euclidean distance to other nodes
  double avgDist = 0.0;
  node v;
  forEach(v, graph->getNodes()) {
    const Coord& position2 = layoutResult->getNodeValue(v);

    avgDist += getDist(position, position2);
  }
  avgDist /= graph->numberOfNodes()-1;

  if (dir2 != 0.0) {
    // normalize force vector with second derivation of energy
    for (unsigned int d=0; d<_dim; ++d)
      dir[d] /= dir2;

    // ensure that the length of dir is not greater
    // than average Euclidean distance to other nodes

    double length = 0;//calculate length of Dir //getDist(dir, new double[_dim]);

    if (avgDist > 0.0 && length > avgDist) {
      length /= avgDist;

      for (unsigned int d=0; d<_dim; ++d)
        dir[d] /= length;
    }
  }
  else {
    for (unsigned int d=0; d<_dim; ++d)
      dir[d] = 0.0;
  }
}

void LinLogLayout::getDirection (node u, double* dir, OctTree* tree) {
  for (unsigned int d=0; d<_dim; ++d)
    dir[d] = 0.0;

  double dir2 = addRepulsionDir(u, dir, tree);
  dir2 += addAttractionDir(u, dir);
  dir2 += addGravitationDir(u, dir);

  if (dir2 != 0.0) {
    // normalize force vector with second derivation of energy
    for (unsigned int d=0; d<_dim; ++d)
      dir[d] /= dir2;

    // ensure that the length of dir is not greater
    // than 1/16 of the octtree width,
    // to prevent the node from leaving the octtree region
    double scale = 1.0;

    for (unsigned int d = 0; d < _dim; ++d) {
      double width = tree->maxPos[d] - tree->minPos[d];

      if (width > 0.0)
        scale = std::min(scale, fabs(width/16/dir[d]));
    }

    for (unsigned int d=0; d<_dim; ++d)
      dir[d] *= scale;
  }
  else {
    for (unsigned int d=0; d<_dim; ++d)
      dir[d] = 0.0;
  }
}

/**
 * Iteratively minimizes energy using the Barnes-Hut algorithm.
 * Starts from the positions in the parameter <code>positions</code>,
 * and stores the computed positions in <code>positions</code>.
* @param positions  position in <code>nrDims</code>-dimensional space for each node.
*   Is not copied and serves as input and output parameter.
*   Each position must be a <code>double[nrDims]</code>.
*   If the input is two-dimensional (i.e. the third array element
*   is 0.0 for all nodes), the output is also two-dimensional.
*   Different nodes with nonzero weights must have different positions.
*   Random initial positions are appropriate.
* @param nrIterations  number of iterations. Choose appropriate values
*   by observing the convergence of energy.  A typical value is 100.
*/
bool LinLogLayout::minimizeEnergyNoTree (int nrIterations) {
  if (graph->numberOfNodes() <= 1)
    return true;

  initEnergyFactors();

  double finalAttrExponent = attrExponent;
  double finalRepuExponent = repuExponent;

  // compute initial energy
  computeBaryCenter();

  double energySum = 0.0;

  node u;
  forEach(u, graph->getNodes())
  energySum += getEnergy(u);

  // minimize energy
  double oldPos[3] = {0,0,0};
  double bestDir[3] = {0,0,0};

  for (int step = 1; step <= nrIterations; ++step) {
    computeBaryCenter();

    if (nrIterations >= 50 && finalRepuExponent < 1.0) {
      attrExponent = finalAttrExponent;
      repuExponent = finalRepuExponent;

      if (step <= 0.6*nrIterations) {
        // use energy model with few local minima
        attrExponent += 1.1 * (1.0 - finalRepuExponent);
        repuExponent += 0.9 * (1.0 - finalRepuExponent);
      }
      else if (step <= 0.9*nrIterations) {
        // gradually move to final energy model
        attrExponent += 1.1 * (1.0 - finalRepuExponent)
                        * (0.9 - ((double)step)/nrIterations) / 0.3;
        repuExponent += 0.9 * (1.0 - finalRepuExponent)
                        * (0.9 - ((double)step)/nrIterations) / 0.3;
      }
    }

    // move each node
    int count = 0;
    energySum = 0.0;
    forEach(u, graph->getNodes()) {

      count++;

      double oldEnergy = getEnergy(u);
      // compute direction of the move of the node
      getDirection(u, bestDir);

      // line search: compute length of the move
      Coord pos = layoutResult->getNodeValue(u);

      for (unsigned int d=0; d<_dim; ++d)
        oldPos[d] = pos[d];

      double bestEnergy = oldEnergy;
      int bestMultiple = 0;

      for (unsigned int d=0; d<_dim; ++d)
        bestDir[d] /= 32;

      for (int multiple = 32;
           multiple >= 1 && (bestMultiple==0 || bestMultiple/2==multiple);
           multiple /= 2) {
        for (unsigned int d=0; d<_dim; ++d)
          pos[d] = oldPos[d] + bestDir[d] * multiple;

        if(!skipNodes || !skipNodes->getNodeValue(u))
          //if(!noackPillar->getNodeValue(u))
          layoutResult->setNodeValue(u, pos);

        double curEnergy = getEnergy(u);

        if (curEnergy < bestEnergy) {
          bestEnergy = curEnergy;
          bestMultiple = multiple;
        }
      }

      for (int multiple = 64;
           multiple <= 128 && bestMultiple == multiple/2;
           multiple *= 2) {
        for (unsigned int d=0; d<_dim; ++d)
          pos[d] = oldPos[d] + bestDir[d] * multiple;

        if(!skipNodes || !skipNodes->getNodeValue(u))
          //if(!noackPillar->getNodeValue(u))
          layoutResult->setNodeValue(u, pos);

        double curEnergy = getEnergy(u);

        if (curEnergy < bestEnergy) {
          bestEnergy = curEnergy;
          bestMultiple = multiple;
        }
      }

      for (unsigned int d=0; d<_dim; ++d)
        pos[d] = oldPos[d] + bestDir[d] * bestMultiple;

      if(!skipNodes || !skipNodes->getNodeValue(u))
        //if(!noackPillar->getNodeValue(u))
        layoutResult->setNodeValue(u, pos);

      energySum += bestEnergy;

    }

    if ((step *100 / nrIterations) % 10 == 0 && pluginProgress->progress(step, nrIterations)!=TLP_CONTINUE)
      return pluginProgress->state()!=TLP_CANCEL;
  }

  return true;
}

bool LinLogLayout::minimizeEnergy (int nrIterations) {
  if (graph->numberOfNodes() <= 1)
    return true;

  initEnergyFactors();

  double finalAttrExponent = attrExponent;
  double finalRepuExponent = repuExponent;

  // compute initial energy
  computeBaryCenter();
  OctTree* octTree = buildOctTree();

  double energySum = 0.0;

  node u;
  forEach(u, graph->getNodes())
  energySum += getEnergy(u, octTree);

  // minimize energy
  double oldPos[3] = {0,0,0};
  double bestDir[3] = {0,0,0};

  for (int step = 1; step <= nrIterations; ++step) {
    computeBaryCenter();
    octTree = buildOctTree();

    if (nrIterations >= 50 && finalRepuExponent < 1.0) {
      attrExponent = finalAttrExponent;
      repuExponent = finalRepuExponent;

      if (step <= 0.6*nrIterations) {
        // use energy model with few local minima
        attrExponent += 1.1 * (1.0 - finalRepuExponent);
        repuExponent += 0.9 * (1.0 - finalRepuExponent);
      }
      else if (step <= 0.9*nrIterations) {
        // gradually move to final energy model
        attrExponent += 1.1 * (1.0 - finalRepuExponent)
                        * (0.9 - ((double)step)/nrIterations) / 0.3;
        repuExponent += 0.9 * (1.0 - finalRepuExponent)
                        * (0.9 - ((double)step)/nrIterations) / 0.3;
      }
    }

    // move each node
    int count = 0;
    energySum = 0.0;
    forEach(u, graph->getNodes()) {
      ++count;
      double oldEnergy = getEnergy(u, octTree);

      // compute direction of the move of the node
      getDirection(u, bestDir, octTree);

      // line search: compute length of the move
      Coord pos = layoutResult->getNodeValue(u);

      for (unsigned int d=0; d<_dim; ++d)
        oldPos[d] = pos[d];

      double bestEnergy = oldEnergy;
      int bestMultiple = 0;

      for (unsigned int d=0; d<_dim; ++d)
        bestDir[d] /= 32;

      for (int multiple = 32;
           multiple >= 1 && (bestMultiple==0 || bestMultiple/2==multiple);
           multiple /= 2) {
        octTree->removeNode(u, pos, 0);

        for (unsigned int d=0; d<_dim; ++d)
          pos[d] = oldPos[d] + bestDir[d] * multiple;

        octTree->addNode(u, pos, 0);


        if(!skipNodes || !skipNodes->getNodeValue(u))
          layoutResult->setNodeValue(u, pos);

        double curEnergy = getEnergy(u);

        if (curEnergy < bestEnergy) {
          bestEnergy = curEnergy;
          bestMultiple = multiple;
        }
      }

      for (int multiple = 64;
           multiple <= 128 && bestMultiple == multiple/2;
           multiple *= 2) {
        octTree->removeNode(u, pos, 0);

        for (unsigned int d=0; d<_dim; ++d)
          pos[d] = oldPos[d] + bestDir[d] * multiple;

        octTree->addNode(u, pos, 0);

        if(!skipNodes || !skipNodes->getNodeValue(u))
          layoutResult->setNodeValue(u, pos);

        double curEnergy = getEnergy(u);

        if (curEnergy < bestEnergy) {
          bestEnergy = curEnergy;
          bestMultiple = multiple;
        }
      }

      for (unsigned int d=0; d<_dim; ++d)
        pos[d] = oldPos[d] + bestDir[d] * bestMultiple;

      if(!skipNodes || !skipNodes->getNodeValue(u))
        layoutResult->setNodeValue(u, pos);

      energySum += bestEnergy;
    }

    if ((step *100 / nrIterations) % 10 == 0 &&
        pluginProgress->progress(step, nrIterations)!=TLP_CONTINUE)
      return pluginProgress->state()!=TLP_CANCEL;
  }

  return true;
}



/**
* Computes the position of the barycenter of all nodes
* and stores it in the attribute <code>baryCenter</code>.
*/
void LinLogLayout::computeBaryCenter () {
  for (unsigned int d=0; d<_dim; ++d)
    baryCenter[d] = 0.0;

  double weightSum = 0.0;
  node u;
  forEach(u, graph->getNodes()) {
    double u_weight = linLogWeight->getNodeValue(u);
    weightSum += u_weight;
    const Coord& position = layoutResult->getNodeValue(u);

    for (unsigned int d=0; d<_dim; ++d)
      baryCenter[d] += u_weight * position[d];
  }

  if (weightSum > 0.0) {
    for (unsigned int d=0; d<_dim; ++d)
      baryCenter[d] /= weightSum;
  }
}


void LinLogLayout::initWeights2 () {
  linLogWeight = new tlp::DoubleProperty(graph);
  linLogWeight->setAllNodeValue(0.0);

  double weight = 0.0;
  node u;

  if (edgeWeight == NULL)
    forEach(u, graph->getNodes()) {
    weight = 0.0;
    edge e;
    forEach(e,  graph->getInOutEdges(u)) {
      ++weight;
      linLogWeight->setEdgeValue(e,1.0);
    }

    linLogWeight->setNodeValue (u, weight);
  }
  else
    forEach(u, graph->getNodes()) {
    weight = 0.0;
    edge e;
    forEach(e,  graph->getInOutEdges(u)) {
      double tmpweight = edgeWeight->getEdgeDoubleValue(e)*100.0+1.0;
      weight+= tmpweight ;
      linLogWeight->setEdgeValue(e,tmpweight);
    }

    linLogWeight->setNodeValue (u, weight);
  }
}

void LinLogLayout::initWeights () {
  linLogWeight = new tlp::DoubleProperty(graph);
  linLogWeight->setAllNodeValue(0.0);
  linLogWeight->setAllEdgeValue(0.0);

  node u;

  if (edgeWeight == NULL) {
    edge e;
    forEach(e,  graph->getEdges()) {
      const std::pair<node, node>& eEnds = graph->ends(e);
      node u = eEnds.first;
      node v = eEnds.second;
      double wu = linLogWeight->getNodeValue(u);
      double wv = linLogWeight->getNodeValue(v);

      linLogWeight->setEdgeValue(e,1.0);
      linLogWeight->setNodeValue(u,wu+1.0);
      linLogWeight->setNodeValue(v,wv+1.0);
    }
  }
  else
    forEach(u, graph->getNodes()) {
    double weight = 0.0;
    edge e;
    forEach(e,  graph->getInOutEdges(u)) {
      double tmpweight = edgeWeight->getEdgeDoubleValue(e)*100.0+1.0;
      weight+= tmpweight ;
      linLogWeight->setEdgeValue(e,tmpweight);
    }

    linLogWeight->setNodeValue (u, weight);
  }
}


OctTree* LinLogLayout::buildOctTree() {
  // compute mimima and maxima of positions in each dimension
  Coord minPos (100000, 100000, 100000);
  Coord maxPos (-100000,-100000,-100000);
  Coord zero (0,0,0);

  node u;
  forEach(u, linLogWeight->getNonDefaultValuatedNodes()) {
    const Coord& position = layoutResult->getNodeValue(u);

    for (unsigned int d = 0; d < _dim; ++d) {
      minPos[d] = std::min (position[d], minPos[d]);
      maxPos[d] = std::max (position[d], maxPos[d]);
    }
  }

  // provide additional space for moving nodes
  for (unsigned int d = 0; d < _dim; ++d) {
    double posDiff = maxPos[d] - minPos[d];
    maxPos[d] += posDiff / 2;
    minPos[d] -= posDiff / 2;
  }

  node n;
  // add nodes with non-zero weight to the octtree
  OctTree* result = new OctTree(u, zero, minPos, maxPos, linLogWeight, true);

  forEach (u, linLogWeight->getNonDefaultValuatedNodes()) {
    result->addNode (u, layoutResult->getNodeValue(u), 0);
  }
  return result;
}

void LinLogLayout::setAttrExp (double d) {
  attrExponent = d;
}

void LinLogLayout::setRepExp (double d) {
  repuExponent = d;
}

void LinLogLayout::setGravFact (double d) {
  gravFactor = d;
}