File: RectanglePacking.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (224 lines) | stat: -rw-r--r-- 10,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#ifndef RECTANGLEPACKING_H
#define RECTANGLEPACKING_H

#include <vector>
#include "Number.h"
#include <tulip/PluginProgress.h>
#include "RectangleRelativePositionList.h"

/**
 *This class is used for the implementation of the greedy algorithm.
 */
class RectanglePacking {
public:

  RectangleRelativePositionList * firstSequence;/**< List which is useful for the stocking of the first sequence of the even sequence. */

  int *placesOfRectanglesInSecondSequence; /**< Array which is used for the stocking of the positions of the rectangles in the second sequence. */

  int numberOfPositionnedRectangles; /**< Current value of the number of packed rectangles. */
  int numberOfRectangles; /**< Value of the number of rectangles to pack. */

  int bestPlaceInFirstSequence; /**< Current best position of a new rectangle to pack, in the first sequence, since the beginning of the position tests. */
  int bestPlaceInSecondSequence; /**< Current best position of a new rectangle to pack, in the second sequence, since the beginning of the position tests. */

  float newRectangleWidth; /**< Width of a new rectangle to pack. */
  float newRectangleHeight; /**< Height of a new rectangle to pack. */

  float newRectangleLeftAbscissa; /**< Left abscissa of a new rectangle to pack, for a tested position. */
  float newRectangleLowOrdinate; /**< Low ordinate of a new rectangle to pack, for a tested position. */

  float bestRectangleLeftAbscissa; /**< Best left abscissa of a new rectangle to pack since the beginning of the position tests. */
  float bestRectangleLowOrdinate; /**< Best low ordinate of a new rectangle to pack since the beginning of the position tests. */

  float maxWidthOfBoundingBox; /**< Width of the rectangle including all the packed rectangles and a new rectangle to pack, for a tested position. */
  float maxHeightOfBoundingBox; /**< Width of the rectangle including all the packed rectangles and a new rectangle to pack, for a tested position. */

  float bestWidthOfBoundingBox; /**< Best width of the rectangle including all the packed rectangles and a new rectangle to pack since the beginning of the position tests. */
  float bestHeightOfBoundingBox; /**< Best height of the rectangle including all the packed rectangles and a new rectangle to pack since the beginning of the position tests. */

  /**
   *constructor of the RectanglePacking class.
   *@param numberRects number of rectangles to pack.
   */
  RectanglePacking(int numberRects);

  /**
   *destroyer of the RectanglePacking class.
   */
  ~RectanglePacking();

  /**
   *Place the rectangles not packed in an optimal way around the rectangle
   *including the rectangles packed in an optimal way.
   */
  void defaultPositionRestOfRectangles(std::vector<tlp::Rectangle<float> >::iterator itlim, std::vector<tlp::Rectangle<float> >::iterator itend);

  /**
   *Search the best co-ordinates of a rectangle in order to pack it in the
   *best way. Test the results obtained with all the possible positions in
   * the even sequence.
   */
  void optimalPositionOfNewRectangle(std::vector<tlp::Rectangle<float> >::iterator itNewRect);

  /**
   *Search the co-ordinates of a rectangle for the positions tested in the
   *first and in the second sequence of the even sequence. Search the
   *dimensions of the rectangle including all the packed rectangles.
   *@param positionInFirstSequence position tested in the first sequence.
   *@param positionInSecondSequence position tested in the second sequence.
   */
  std::list<RectangleRelativePosition>::iterator testOfPositionOfNewRectangle(int positionInFirstSequence, int positionInSecondSequence);

  /**
   *Search the co-ordinates of a rectangle for the positions tested in the
   *first and in the second sequence of the even sequence. Search the
   *dimensions of the rectangle including the rectangles placed on the left
   *and below the new rectangle.
   *@param positionInFirstSequence position tested in the first sequence.
   *@param positionInSecondSequence position tested in the second sequence.
   */
  std::list<RectangleRelativePosition>::iterator positionOfNewRectangle(int positionInFirstSequence, int positionInSecondSequence);

  /**
   *Determine if the rectangle pointed by itRectLeftOrBelowOfNewRect has a
   *right abscissa or a high ordonate higher than those of rectangles yet
   *visited.
   *@param itRectLeftOrBelowOfNewRect pointer on one of the structures of
   *RectangleRelativePosition corresponding to a rectangle places on the left
   *or below the tested position of the new rectangle.
   *@param positionInFirstSequence position tested in the first sequence.
   *@param positionInSecondSequence position tested in the second sequence.
   */
  void coordinatesOfNewRectangle(std::list<RectangleRelativePosition>::iterator itRectLeftOrBelowOfNewRect, int positionInFirstSequence, int positionInSecondSequence);

  /**
   *Stock in the fields maxWidthOfBoundingBox and maxHeightOfBoundingBox
   *the dimensions of the rectangle including the rectangles on the left
   *and below the considered rectangle.
   */
  void dimensionsBoundingBoxOfRectanglesLeftOrBelowNewRectangle(std::list<RectangleRelativePosition>::iterator itRectLeftOrBelowOfNewRect);

  /**
   *Search the dimensions of the rectangle including the new rectangle and
   *the rectangles on the left and below it.
   */
  void dimensionsBoundingBoxOfNewRectangleAndRectanglesLeftOrBelow();

  /**
   *Calculate again the co-ordinates of the rectangles places on the right and
   *above the new rectangle. Calculate the dimensions of the rectangle
   *including all the packed rectangles.
   *@param positionInFirstSequence position tested in the first sequence.
   *@param positionInSecondSequence position tested in the second sequence.
   */
  void repositionOfRectanglesRightOrAboveNewRectangle(std::list<RectangleRelativePosition>::iterator itFirstRectangleRightOrAboveOfNewRectangle, int positionInFirstSequence, int positionInSecondSequence);

  /**
   *Compare the right abscissa and the high ordonate of the new rectangle,
   * with the left abscissa and the low ordonate of the rectangle pointed by
   *itRectOfSequenceToReposition.
   *@param itRectOfSequenceToReposition pointer on one rectangle placed on the
   *right or above the new rectangle.
   *@param positionInSecondSequence position tested in the second sequence.
   */
  void modificationCoordinatesRectanglesRightOrAboveNewRectangleInFonctionNewRectangle(std::list<RectangleRelativePosition>::iterator itRectOfSequenceToReposition, int positionInSecondSequence);

  /**
    *Compare the left abscissa and the low ordonate of the rectangle pointed by
    *itRectOfSequenceToReposition with the right abscissa  and the high
    *ordonate of all the rectangles placed in the first sequence between
    *the first rectangle on the right of the tested position and the rectangle
    *pointed by itRectOfSequenceToReposition.
    *@param itFirstRectangleRightOrAboveOfNewRectangle pointer on the first
    *rectangle on the right or above the new rectangle.
    *@param itRectOfSequenceToReposition pointer on the rectangles places on the
    *right or above the new rectangle.
    */
  void modificationCoordinatesRectanglesRightOrAboveNewRectangleInFonctionAlreadyRepositionnedRectangles(std::list<RectangleRelativePosition>::iterator itFirstRectangleRightOrAboveOfNewRectangle, std::list<RectangleRelativePosition>::iterator itRectOfSequenceToReposition);

  /**
   *Search the dimensions of the rectangle including the rectangles on the
   *left and below the considered rectangle.
   */
  void dimensionsBoundingBoxOfAllOptimalPositionnedRectangles(std::list<RectangleRelativePosition>::iterator itRectOfSequenceToReposition);

  /**
   * Modify the even sequence when all the position tests, for a new rectangle
   * to pack, have been made.
   */
  void modificationOfSequencePair(std::vector<tlp::Rectangle<float> >::iterator itNewRect, std::list<RectangleRelativePosition>::iterator itBestPositionInFirstSequence);

  /**
   *Calculate the number of rectangles we can pack in an optimal way without
   *going beyond the complexity desired.
   *@param quality give the complexity desired.
   *@return an integer equal to the number of rectangles we want to pack
   * in an optimal way.
   */
  int calculOfNumberOptimalRepositionnedRectangles(const char * quality);

  /**
   *Calculate the ratio width/height or height/width so that the return >=1.
   */
  float calculateRatio();

  /**
   *decide if a new rectangle is going to be placed in line or in column.
   */
  void lineOrColumnToStart(bool & boolWidth, bool & boolHeight);

  /**
   *End a line and decide if the rectangle pointed is going to start a line
   *or a column.
   */
  void endOfLine(float & heightTemp, float & widthTemp, bool & boolWidth, bool & boolHeight);

  /**
   *End a column and decide if the rectangle pointed is going to start a line
   *or a column.
   */
  void endOfColumn(float & widthTemp, float & heightTemp, bool & boolWidth, bool & boolHeight);

  /**
   *We start or continue a new line if the width of the new rectangle to pack,
   * added to the width of the current line, is strictly lower to the width of
   * the including rectangle.
   */
  void continueLine(std::vector<tlp::Rectangle<float> >::iterator itr, float & widthTemp,float & heightTemp, bool & boolWidth, bool & boolHeight);

  /**
  *We start or continue a new column if the height of the new rectangle to
  *pack, added to the height of the current column, is strictly lower to the
  *height of the including rectangle.
  */
  void continueColumn(std::vector<tlp::Rectangle<float> >::iterator itr, float & widthTemp,float & heightTemp, bool & boolWidth, bool & boolHeight);

  void optimalPositionOfNewRectangleLimPos(std::vector<tlp::Rectangle<float> >::iterator itNewRect, int numberTestedPositions);

  /**
   *Calculate the number of rectangles we can pack without go beyond the
   *complexity desired.
   */
  int calculNumberOfTestedPositions(const char * quality);
};

#endif