1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#ifndef SQUARIFIEDTREEMAP_H
#define SQUARIFIEDTREEMAP_H
#include <vector>
#include <utility>
#include <tulip/tuliphash.h>
#include "tulip/TulipPluginHeaders.h"
#include "tulip/Rectangle.h"
typedef std::vector<tlp::node> VecNode;
typedef TLP_HASH_MAP<tlp::node, double> MapNode;
typedef std::pair<tlp::node, double> PairNodeF;
typedef std::vector<PairNodeF> PairVector;
/** \addtogroup layout */
/// SquarifiedTreeMap.h - An implementation of a squarified treemap layout.
/** This plugin is an implementation of TreeMap and Squarified treemap layout.
*
* Squarified Treemaps : \n
* Bruls, M., Huizing, K., & van Wijk, J. J. \n
* In Proc. of Joint Eurographics and IEEE TCVG Symp. on Visualization \n
* (TCVG 2000) IEEE Press, pp. 33-42.
*
* Shneiderman, B. (March 1991)
* Tree visualization with treemaps: a 2-d space-filling approach
* ACM Transactions on Graphics, vol. 11, 1 (Jan. 1992) 92-99.
* HCIL-91-03, CS-TR-2645, CAR-TR-548
*
* \note This algorith only works on tree.
*
* @version 1.0.0 complete rewrite, merge treemap and squarified in the same algorithm
* simplify implementation. The algorithm can be tune to go 2 or 3 time faster however, since the algorithm
* is fast enough, the code is written to be easily read and maintain.
* @author Auber David
*
* @version 0.0.0
* @author Julien Testut, Antony Durand, Pascal Ollier, Yashvin Nababsing, \n
* Sebastien Leclerc, Thibault Ruchon, Eric Dauchier \n
* University Bordeaux I France
*/
class SquarifiedTreeMap: public tlp::LayoutAlgorithm {
friend class SquarifiedTreeMapUnitTests;
public:
PLUGININFORMATION("Squarified Tree Map",
"Tulip Team",
"25/05/2010",
"Implements a TreeMap and Squarified Treemap layout.<br/>"
"For Treemap see:<br/><b>Tree visualization with treemaps: a 2-d space-filling approach</b> , Shneiderman B., ACM Transactions on Graphics, vol. 11, 1 pages 92-99 (1992).<br/>"
" For Squarified Treemaps see:<br/> Bruls, M., Huizing, K., & van Wijk, J. J."
" Proc. of Joint Eurographics and IEEE TCVG Symp. on Visualization (TCVG 2000) IEEE Press, pp. 33-42.",
"2.0", "Tree")
SquarifiedTreeMap(const tlp::PluginContext* context);
~SquarifiedTreeMap();
bool check(std::string&);
bool run();
private:
tlp::SizeProperty* sizeResult;
tlp::NumericProperty* metric;
tlp::IntegerProperty* glyphResult;
tlp::MutableContainer<double> nodesSize;
bool shneidermanTreeMap;
double aspectRatio;
/**
* return a measure quality of row in which one wants ot add n
* width is the width of the rectangle in which we create the row
* length is the height of the rectangle in wich on creates the row
* surface is sum of size of elements what belongs to the rectangle
*/
double evaluateRow(const std::vector<tlp::node> &row, tlp::node n, double width, double length, double surface);
void layoutRow(const std::vector<tlp::node> &row, const int depth, const tlp::Rectd &rectArea);
void squarify(const std::vector<tlp::node> &toTreat, const tlp::Rectd &rectArea, const int depth);
//change the rectangle to take into account space reserved for the drawing of borders and headers
//the function currently fix adjust the size for the 2D windwows glyph.
tlp::Rectd adjustRectangle(const tlp::Rectd &r) const;
//return a vector containing children of n ordered in decreasing order of their size.
std::vector<tlp::node> orderedChildren(const tlp::node n) const;
/**
* compute the size of each node in the tree
* the size is the sum of all the size of all leaves descendant of a node
* in the tree.
*/
void computeNodesSize(tlp::node n);
};
#endif
|