1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <tulip/GraphTools.h>
#include "TreeLeaf.h"
#include "DatasetTools.h"
#include "Orientation.h"
PLUGIN(TreeLeaf)
using namespace std;
using namespace tlp;
const char* paramHelp[] = {
//Orientation
HTML_HELP_OPEN() \
HTML_HELP_DEF("Type", "bool") \
HTML_HELP_DEF("Default", "true") \
HTML_HELP_BODY() \
"If the layer spacing is uniform, the spacing between to consecutive layers will be the same." \
HTML_HELP_CLOSE(),
};
void TreeLeaf::computeLevelHeights(tlp::Graph *tree, tlp::node n, unsigned int depth,
OrientableSizeProxy *oriSize) {
if (levelHeights.size() == depth)
levelHeights.push_back(0);
float nodeHeight = oriSize->getNodeValue(n).getH();
if (nodeHeight > levelHeights[depth])
levelHeights[depth] = nodeHeight;
node on;
forEach(on, tree->getOutNodes(n))
computeLevelHeights(tree, on, depth + 1, oriSize);
}
float TreeLeaf::dfsPlacement(tlp::Graph* tree, tlp::node n, float x, float y, unsigned int depth,
OrientableLayout *oriLayout, OrientableSizeProxy *oriSize) {
float minX = 0;
float maxX = 0;
float nodeWidth = oriSize->getNodeValue(n).getW();
if (tree->outdeg(n) == 0) {
oriLayout->setNodeValue(n, OrientableCoord(oriLayout, x + nodeWidth/2, y, 0));
return x + nodeWidth;
}
Iterator<node> *itN=tree->getOutNodes(n);
float layerSpacing = minLayerSpacing;
if (uniformLayerDistance == false) {
if (depth < levelHeights.size()-1) {
layerSpacing += nodeSpacing;
layerSpacing = max(minLayerSpacing, (levelHeights[depth] + levelHeights[depth + 1]) / 2);
}
}
if (itN->hasNext()) {
node itn = itN->next();
minX = x;
maxX = x = dfsPlacement(tree, itn, x, y + layerSpacing, depth + 1, oriLayout, oriSize);
if (minX + nodeWidth > maxX)
maxX = minX + nodeWidth;
}
for (; itN->hasNext();) {
node itn = itN->next();
x += nodeSpacing;
x = dfsPlacement(tree, itn, x, y + layerSpacing, depth + 1, oriLayout, oriSize);
if (x > maxX)
maxX = x;
if (x < minX)
minX = x;
}
delete itN;
x = (minX + maxX)/2;
oriLayout->setNodeValue(n, OrientableCoord(oriLayout, x, y, 0));
return maxX;
}
TreeLeaf::TreeLeaf(const tlp::PluginContext* context):LayoutAlgorithm(context) {
addNodeSizePropertyParameter(this);
addOrientationParameters(this);
addInParameter<bool>("uniform layer spacing", paramHelp[0], "true");
addSpacingParameters(this);
}
TreeLeaf::~TreeLeaf() {}
bool TreeLeaf::run() {
orientationType mask = getMask(dataSet);
OrientableLayout oriLayout(result, mask);
SizeProperty* size;
if (!getNodeSizePropertyParameter(dataSet, size))
size = graph->getProperty<SizeProperty>("viewSize");
uniformLayerDistance = true;
if (dataSet != NULL)
dataSet->get("uniform layer spacing", uniformLayerDistance);
OrientableSizeProxy oriSize(size, mask);
getSpacingParameters(dataSet, nodeSpacing, minLayerSpacing);
if (pluginProgress)
pluginProgress->showPreview(false);
// push a temporary graph state (not redoable)
// preserving layout updates
std::vector<PropertyInterface*> propsToPreserve;
if (result->getName() != "")
propsToPreserve.push_back(result);
graph->push(false, &propsToPreserve);
Graph *tree = TreeTest::computeTree(graph, pluginProgress);
if (pluginProgress && pluginProgress->state() != TLP_CONTINUE) {
graph->pop();
return false;
}
node root = tree->getSource();
if (!root.isValid())
// graph is empty
return true;
computeLevelHeights(tree, root, 0, &oriSize);
// check if the specified layer spacing is greater
// than the max of the minimum layer spacing of the tree
if (uniformLayerDistance == true) {
for (unsigned int i = 0; i < levelHeights.size() - 1; ++i) {
float layerSpacing = (levelHeights[i] + levelHeights[i + 1]) / 2 + nodeSpacing;
if (layerSpacing > minLayerSpacing)
minLayerSpacing = layerSpacing;
}
}
dfsPlacement(tree, root, 0, 0, 0, &oriLayout, &oriSize);
// forget last temporary graph state
graph->pop();
return true;
}
|