File: LinkCommunities.cpp

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (513 lines) | stat: -rw-r--r-- 15,414 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#ifdef _OPENMP
#include <omp.h>
#endif
#include <tulip/TulipPluginHeaders.h>
#include <tulip/vectorgraph.h>
#include <tulip/vectorgraphproperty.h>
#include <tulip/ForEach.h>

using namespace std;
using namespace tlp;

/** \addtogroup clustering */
/*@{*/
/** \file
* @brief This plugin is an implementation of a fuzzy clustering procedure. First introduced in :
*
* Ahn, Y.Y. and Bagrow, J.P. and Lehmann, S., \n
* "Link communities reveal multiscale complexity in networks", \n
* in Nature vol:466, \n
* pages 761--764, \n
* 2010 \n
*
* The result of this procedure is saved as an edge metric : two edges share the same value
* if they are part of the same group.
* The result for a node shows the number of groups to which it belongs.
*
* @note To create subgraphs using the result of this algortihm use "Equal Value" with parameter Type="edges".
*
* @todo Deal with directed graphs.
*
**/
class LinkCommunities : public tlp::DoubleAlgorithm {
public:

  PLUGININFORMATION("Link Communities","François Queyroi","25/02/11",
                    "Edges partitioning measure used for community detection.<br>"
                    "It is an implementation of a fuzzy clustering procedure. First introduced in :<br>"
                    " <b>Link communities reveal multiscale complexity in networks</b>, Ahn, Y.Y. and Bagrow, J.P. and Lehmann, S., Nature vol:466, 761--764 (2010)",
                    "1.0","Clustering")

  LinkCommunities(const tlp::PluginContext *);
  ~LinkCommunities();
  bool run();
private:
  /**
  * @brief Create the dual (as VectorGraph) of the graph
  * in order to store Similarity value between two edges
  * Edges are represented by nodes linked according to edges' neighborhood.
  **/
  void createDualGraph();
  /**
  * @brief Compute all similarities between all pairs of adjacent edges.
  **/
  void computeSimilarities();
  /**
  * @brief Compute similarity (Jaccard) between edges mapDNtoE[source(e)] and mapDNtoE[target(e)]
  **/
  double getSimilarity(tlp::edge e);
  /**
  * @brief Compute weighted (Tanimoto) similarity between edges mapDNtoE[source(e)] and mapDNtoE[target(e)]
  **/
  double getWeightedSimilarity(tlp::edge e);
  /**
  * @brief Return the number of graph node induced by the set of dual node.
  **/
  double getNumberOfNodes(std::set<tlp::node>& se);
  /**
  * @brief Compute the density of the set of dual node.
  * d(se) = (|se|-NumberOfNodes(se)+1)/( |se|*(|se|-1)/2 - NumberOfNodes(se)+1 )
  **/
  double getDensity(std::set<tlp::node>& se);
  /**
  * @brief Compute the average density of the edge partition
  * D(partition) = 2/M sum d(se)
  **/
  double getAverageDensity(std::vector<std::set<tlp::node> >& partition);
  /**
  * @brief Perform #(step) single linkage clustering in order to find the partition
  * which maximise the average density
  **/
  double findBestThreshold(unsigned int);
  /**
  * @brief Compute the partition of dual node for the given threshold value
  **/
  void computeNodePartition(double, std::vector<std::set<tlp::node> >&);

  tlp::VectorGraph dual; // Dual Node -> Graph Edges; Duag Edge -> indicates that the linked Graph Edges have a same end.
  tlp::MutableContainer<tlp::edge> mapDNtoE;
  tlp::MutableContainer<tlp::node> mapKeystone;
  tlp::EdgeProperty<double> similarity;


  tlp::NumericProperty* metric;
};
/*@}*/

//==============================================================================================================
PLUGIN(LinkCommunities)
//==============================================================================================================
namespace {
const char * paramHelp[] = {
  // metric
  HTML_HELP_OPEN()              \
  HTML_HELP_DEF( "type", "NumericProperty" )       \
  HTML_HELP_DEF( "value", "An existing edge metric" )                 \
  HTML_HELP_BODY()              \
  "An existing edge metric property"\
  HTML_HELP_CLOSE(),
  // Group isthmus
  HTML_HELP_OPEN() \
  HTML_HELP_DEF( "type", "bool" ) \
  HTML_HELP_DEF( "values", "[true, false]" ) \
  HTML_HELP_DEF( "default", "true" ) \
  HTML_HELP_BODY() \
  "This parameter indicates whether the single-link clusters should be merged or not." \
  HTML_HELP_CLOSE(),
  // Number of steps
  HTML_HELP_OPEN() \
  HTML_HELP_DEF( "type", "unsigned int" ) \
  HTML_HELP_DEF( "default", "200" ) \
  HTML_HELP_BODY() \
  "This parameter indicates the number of thresholds to be compared" \
  HTML_HELP_CLOSE(),
};
}
//==============================================================================================================
LinkCommunities::LinkCommunities(const tlp::PluginContext *context) : DoubleAlgorithm(context), metric(NULL) {
  addInParameter<NumericProperty*>("metric", paramHelp[0],"",false);
  addInParameter<bool>("Group isthmus", paramHelp[1],"true",true);
  addInParameter<unsigned int>("Number of steps",paramHelp[2],"200",true);
}
//==============================================================================================================
LinkCommunities::~LinkCommunities() {}
//==============================================================================================================
bool LinkCommunities::run() {

#ifdef _OPENMP
  omp_set_num_threads(omp_get_num_procs());
#endif

  metric = NULL;
  bool group_isthmus = true;
  unsigned int nb_steps = 200;

  if(dataSet!=0) {
    dataSet->get("metric",metric);
    dataSet->get("Group isthmus",group_isthmus);
    dataSet->get("Number of steps",nb_steps);
  }

  createDualGraph();

  dual.alloc(similarity);
  computeSimilarities();

  result->setAllNodeValue(0);
  result->setAllEdgeValue(0);
  double th = findBestThreshold(nb_steps);

  std::vector<std::set<tlp::node> > best_part;
  computeNodePartition(th, best_part);

  for(unsigned int i=0; i<best_part.size(); ++i) {
    //Isthmus are gathered in community 0
    if(best_part[i].size()>=2 || group_isthmus==false) {
      set<node>::const_iterator ite;

      for(ite=best_part[i].begin(); ite!=best_part[i].end(); ++ite) {
        edge re = mapDNtoE.get((*ite).id);
        result->setEdgeValue(re,i+1);
      }
    }
  }

  dual.free(similarity);
  dual.clear();

  node n;
  forEach(n,graph->getNodes()) {
    set<double> around;
    edge e;
    forEach(e,graph->getInOutEdges(n)) {
      if(around.find(result->getEdgeValue(e))==around.end() && result->getEdgeValue(e)!=0) {
        around.insert(result->getEdgeValue(e));
      }
    }
    result->setNodeValue(n,around.size());
  }
  return true;
}
//==============================================================================================================
void LinkCommunities::createDualGraph() {
  tlp::MutableContainer<node> mapEtoN;
  mapEtoN.setAll(node());
  edge e;
  forEach(e,graph->getEdges()) {
    node dn = dual.addNode();
    mapDNtoE.set(dn.id,e);
    mapEtoN.set(e.id,dn);
    const std::pair<node, node>& eEnds = graph->ends(e);
    node src = eEnds.first;
    node tgt = eEnds.second;
    edge ee;
    forEach(ee,graph->getInOutEdges(src)) {
      if(ee!=e) {
        if(mapEtoN.get(ee.id).isValid()) {
          if(!dual.existEdge(dn,mapEtoN.get(ee.id),false).isValid()) {
            edge de = dual.addEdge(dn,mapEtoN.get(ee.id));
            mapKeystone.set(de.id,src);
          }
        }
      }
    }
    forEach(ee,graph->getInOutEdges(tgt)) {
      if(ee!=e) {
        if(mapEtoN.get(ee.id).isValid()) {
          if(!dual.existEdge(dn,mapEtoN.get(ee.id),false).isValid()) {
            edge de = dual.addEdge(dn,mapEtoN.get(ee.id));
            mapKeystone.set(de.id,tgt);
          }
        }
      }
    }

  }
}
//==============================================================================================================
void LinkCommunities::computeSimilarities() {
  if(metric == NULL) {
#ifdef _OPENMP
    #pragma omp parallel for
#endif

    for(int i=0; i<(int)dual.numberOfEdges(); ++i) { //use int for MSVS2010 compilation
      edge e = dual(i);
      similarity[e]=getSimilarity(e);
    }
  }
  else
#ifdef _OPENMP
    #pragma omp parallel for
#endif
    for(int i=0; i<(int)dual.numberOfEdges(); ++i) { //use int for MSVS2010 compilation
      edge e = dual(i);
      similarity[e]=getWeightedSimilarity(e);
    }
}
//==============================================================================================================
double LinkCommunities::getSimilarity(edge ee) {
  node key = mapKeystone.get(ee.id);
  edge e1=mapDNtoE.get(dual.source(ee).id);
  edge e2=mapDNtoE.get(dual.target(ee).id);
  const std::pair<node, node>& e1Ends = graph->ends(e1);
  node n1 = (e1Ends.first != key) ? e1Ends.first : e1Ends.second;
  const std::pair<node, node>& e2Ends = graph->ends(e2);
  node n2 = (e2Ends.first != key) ? e2Ends.first : e2Ends.second;
  double wuv=0.0,m=0.0;
  node n;
  forEach(n,graph->getOutNodes(n1)) {
    if(graph->existEdge(n2,n,true).isValid())
      wuv+=1.0;

    if(graph->existEdge(n,n2,true).isValid())
      wuv+=1.0;

    m+=1.0;
  }
  forEach(n,graph->getInNodes(n1)) {
    if(graph->existEdge(n2,n,true).isValid())
      wuv+=1.0;

    if(graph->existEdge(n,n2,true).isValid())
      wuv+=1.0;

    m+=1.0;
  }

  forEach(n,graph->getInOutNodes(n2)) {
    if(!graph->existEdge(n1,n,false).isValid())
      m+=1.0;
  }

  if(graph->existEdge(n1,n2,false).isValid())
    wuv+=2.0;

  if(m>0)
    return wuv/m;
  else
    return 0.0;
}
//==============================================================================================================
double LinkCommunities::getWeightedSimilarity(tlp::edge ee) {
  node key = mapKeystone.get(ee.id);
  edge e1=mapDNtoE.get(dual.source(ee).id);
  edge e2=mapDNtoE.get(dual.target(ee).id);
  const std::pair<node, node>& e1Ends = graph->ends(e1);
  node n1 = (e1Ends.first != key) ? e1Ends.first : e1Ends.second;
  const std::pair<node, node>& e2Ends = graph->ends(e2);
  node n2 = (e2Ends.first != key) ? e2Ends.first : e2Ends.second;

  if(graph->deg(n1)>graph->deg(n2)) {
    node tmp=n1;
    n1=n2;
    n2=tmp;
  }

  double a1a2=0.0;
  double a1=0.0,a2=0.0;
  double a11=0.0,a22=0.0;
  edge e;
  forEach(e,graph->getInEdges(n1)) {
    double val = metric->getEdgeDoubleValue(e);
    node n=graph->source(e);
    edge me = graph->existEdge(n2,n,true);

    if(me.isValid())
      a1a2+=val*metric->getEdgeDoubleValue(me);

    me = graph->existEdge(n,n2,true);

    if(me.isValid())
      a1a2+=val*metric->getEdgeDoubleValue(me);

    a1+=val;
    a11+=val*val;
  }

  forEach(e,graph->getOutEdges(n1)) {
    double val = metric->getEdgeDoubleValue(e);
    node n=graph->target(e);
    edge me = graph->existEdge(n2,n,true);

    if(me.isValid())
      a1a2+=val*metric->getEdgeDoubleValue(me);

    me = graph->existEdge(n,n2,true);

    if(me.isValid())
      a1a2+=val*metric->getEdgeDoubleValue(me);

    a1+=val;
    a11+=val*val;
  }

  forEach(e,graph->getInOutEdges(n2)) {
    double val = metric->getEdgeDoubleValue(e);
    a2+=val;
    a22+=val*val;
  }
  a1/=graph->deg(n1);
  a11+=a1*a1;
  a2/=graph->deg(n2);
  a22+=a2*a2;

  e = graph->existEdge(n1,n2,false);

  if(e.isValid())
    a1a2+=metric->getEdgeDoubleValue(e)*(a1+a2);

  double m=a11+a22-a1a2;

  if(m<0.0)
    return 0.0;
  else
    return a1a2/m;
}
//==============================================================================================================
double LinkCommunities::getNumberOfNodes(set<node> &se) {
  set<node> rns;
  set<node>::const_iterator ite;

  for(ite=se.begin(); ite!=se.end(); ++ite) {
    edge re = mapDNtoE.get((*ite).id);
    const std::pair<node, node>& reEnds = graph->ends(re);
    rns.insert(reEnds.first);
    rns.insert(reEnds.second);
  }

  return double(rns.size());
}
//==============================================================================================================
double LinkCommunities::getDensity(set<node> &se) {
  double nc = getNumberOfNodes(se);

  if(nc<3.0)
    return 0.0;

  double mc = se.size();
  return (mc-nc+1)/(nc*(nc-1)/2.0-nc+1);
}
//==============================================================================================================
double LinkCommunities::getAverageDensity(vector<set<node> >& partition) {
  double d=0.0;

  for(unsigned int i=0; i<partition.size(); ++i) {
    d+=double(partition[i].size())*getDensity(partition[i]);
  }

  return 2.0*d/(graph->numberOfEdges());
}
//==============================================================================================================
void LinkCommunities::computeNodePartition(double threshold,
    vector<set<node> >& result) {
  tlp::MutableContainer<bool> visited;
  visited.setAll(false);

  unsigned int sz = dual.numberOfNodes();

  for(unsigned int i = 0; i < sz; ++i) {
    node curNode = dual[i];

    if(!(visited.get(curNode.id))) {
      result.push_back(std::set<node>());
      set<node>& component = result.back();
      component.insert(curNode);
      list<node> nodesToVisit;
      visited.set(curNode.id,true);
      nodesToVisit.push_front(curNode);

      while(!nodesToVisit.empty()) {
        curNode=nodesToVisit.front();
        nodesToVisit.pop_front();
        const std::vector<edge>& curEdges = dual.star(curNode);
        unsigned int eSz = curEdges.size();

        for(unsigned int j = 0; j < eSz; ++j) {
          edge e = curEdges[j];

          if(similarity[e]>threshold) {
            node neighbour = dual.opposite(e,curNode);

            if(!(visited.get(neighbour.id))) {
              visited.set(neighbour.id,true);
              component.insert(neighbour);
              nodesToVisit.push_back(neighbour);
            }
          }
        }
      }
    }
  }
}
//==============================================================================================================
double LinkCommunities::findBestThreshold(unsigned int numberOfSteps) {
  double maxD=-2;
  double threshold = 0.0;

  double min = 1.1;
  double max = -1.0;

  int sz = dual.numberOfEdges();
#ifdef _OPENMP
  #pragma omp parallel for
#endif

  for(int i = 0; i < sz; ++i) {
    double value = similarity[dual(i)];
#ifdef _OPENMP
    #pragma omp critical
#endif
    {
      if (value < min)
        min = value;
      else if (value > max)
        max = value;
    }
  }

  double deltaThreshold = (max-min)/double(numberOfSteps);
  double step = min;

#ifdef _OPENMP
  #pragma omp parallel for
#endif

  for (int i=0; i<(int)numberOfSteps; i++) {    //use int for msvs2010 compilation
    vector<set<node> > tmp;
    computeNodePartition(step, tmp);
    double d = getAverageDensity(tmp);

#ifdef _OPENMP
    #pragma omp critical
#endif

    if ( d > maxD) {
      threshold=step;
      maxD=d;
    }

    step += deltaThreshold;
  }

  return threshold;
}
//==============================================================================================================