1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <tulip/tuliphash.h>
#include <tulip/TulipPluginHeaders.h>
using namespace std;
using namespace tlp;
/** \addtogroup clustering */
/*@{*/
/** \file
* \brief An implementation of the Louvain clustering algorithm
*
* This plugin is an implementation of the Louvain clustering algorithm
* first published as:
*
* Blondel, V.D. and Guillaume, J.L. and Lambiotte, R. and Lefebvre, E., \n
* "Fast unfolding of communities in large networks", \n
* "Journal of Statistical Mechanics: Theory and Experiment, P10008",\n
* 2008. \n
*
* <b> HISTORY</b>
*
* - 25/02/2011 Version 1.0: Initial release (François Queyroi)
* - 13/05/2011 Version 2.0 (Bruno Pinaud): Change plugin type from General Algorithm to DoubleAlgorithm, code cleaning and fix some memory leaks.
* - 09/06/2015 Version 2.1 (Patrick Mary) full rewrite according the updated version of the original source code available at https://sites.google.com/site/findcommunities/
*
* \note A threshold for modularity improvement is used here, its value is 0.000001
*
* \author Patrick Mary, Labri
*
*
**/
class LouvainClustering : public tlp::DoubleAlgorithm {
public:
PLUGININFORMATION("Louvain","Patrick Mary","09/06/15",
"Nodes partitioning measure used for community detection."
"This is an implementation of the Louvain clustering algorithm first published as:<br/>"
"<b>Fast unfolding of communities in large networks</b>, Blondel, V.D. and Guillaume, J.L. and Lambiotte, R. and Lefebvre, E., Journal of Statistical Mechanics: Theory and Experiment, P10008 (2008).",
"2.1", "Clustering")
LouvainClustering(const tlp::PluginContext*);
bool run();
private:
// the number of nodes of the original graph
unsigned int nb_nodes;
// a quotient graph of the original graph
VectorGraph* quotient;
// number of nodes in the quotient graph and size of all vectors
unsigned int size;
// the mapping between the nodes of the original graph
// and the quotient nodes
TLP_HASH_MAP<unsigned int, unsigned int> clusters;
// quotient graph edge weights
EdgeProperty<double>* weights;
// total weight (sum of edge weights for the quotient graph)
double total_weight;
std::vector<double> neigh_weight;
std::vector<unsigned int> neigh_pos;
unsigned int neigh_last;
// community to which each node belongs
std::vector<unsigned int> n2c;
// used to renumber the communities
std::vector<int> renumber;
// used to compute the modularity participation of each community
std::vector<double> in,tot;
// a new pass is computed if the last one has generated an increase
// greater than min_modularity
// if 0. even a minor increase is enough to go for one more pass
double min_modularity;
// return the weighted degree and selfloops of a node
// of the current quotient graph
void get_weighted_degree_and_selfloops(unsigned int n, double& wdg, double& nsl) {
wdg = nsl = 0;
const std::vector<edge>& edges = quotient->star(node(n));
for (unsigned int i = 0; i < edges.size(); ++i) {
edge e = edges[i];
double weight = (*weights)[e];
wdg += weight;
// self loop must be counted only once
std::pair<node, node> ends = quotient->ends(e);
if (ends.first == ends.second) {
nsl = weight;
++i;
}
}
}
// compute the gain of modularity if node where inserted in comm
// given that node has dnodecomm links to comm. The formula is:
// [(In(comm)+2d(node,comm))/2m - ((tot(comm)+deg(node))/2m)^2]-
// [In(comm)/2m - (tot(comm)/2m)^2 - (deg(node)/2m)^2]
// where In(comm) = number of half-links strictly inside comm
// Tot(comm) = number of half-links inside or outside comm (sum(degrees))
// d(node,com) = number of links from node to comm
// deg(node) = node degree
// m = number of links
double modularity_gain(unsigned int /*node*/, unsigned int comm,
double dnode_comm, double w_degree) {
return (dnode_comm - tot[comm] * w_degree/total_weight);
}
// compute the modularity of the current partition
double modularity() {
double q = 0.;
double m2 = total_weight;
for (unsigned int i=0 ; i<size ; i++) {
if (tot[i]>0)
q += in[i]/m2 - (tot[i]/m2)*(tot[i]/m2);
}
return q;
}
// compute the set of neighboring communities of node
// for each community, gives the number of links from node to comm
void neigh_comm(unsigned int n) {
for (unsigned int i=0 ; i<neigh_last ; i++)
neigh_weight[neigh_pos[i]]=-1;
neigh_last=0;
neigh_pos[0]=n2c[n];
neigh_weight[neigh_pos[0]]=0;
neigh_last=1;
const std::vector<edge>& edges = quotient->star(node(n));
unsigned int nb_edges = edges.size();
for (unsigned int j = 0; j < nb_edges; ++j) {
edge e = edges[j];
std::pair<node, node> ends = quotient->ends(e);
unsigned int neigh = (ends.first == node(n)) ? ends.second : ends.first;
unsigned int neigh_comm = n2c[neigh];
double neigh_w = (*weights)[e];
if (neigh!=n) {
if (neigh_weight[neigh_comm]==-1) {
neigh_weight[neigh_comm]=0.;
neigh_pos[neigh_last++]=neigh_comm;
}
neigh_weight[neigh_comm]+=neigh_w;
}
}
}
// generates the quotient graph of communities as computed by one_level
void partitionToQuotient(VectorGraph* new_quotient,
EdgeProperty<double>* new_weights) {
// Renumber communities
vector<int> renumber(size, -1);
for (unsigned int n=0 ; n<size ; n++) {
renumber[n2c[n]]++;
}
int final=0;
for (unsigned int i=0 ; i<size ; i++)
if (renumber[i]!=-1)
renumber[i]=final++;
// update clustering
node n;
forEach(n, graph->getNodes()) {
clusters[n.id] = renumber[n2c[clusters[n.id]]];
}
// Compute weighted graph
for (int i = 0; i < final; ++i)
new_quotient->addNode();
total_weight = 0;
const std::vector<edge>& edges = quotient->edges();
unsigned int nb_edges = edges.size();
for(unsigned int i = 0; i < nb_edges; ++i) {
edge e = edges[i];
std::pair<node, node> ends = quotient->ends(e);
node src = ends.first;
node tgt = ends.second;
unsigned int src_comm = renumber[n2c[src]];
unsigned int tgt_comm = renumber[n2c[tgt]];
double weight = (*weights)[e];
edge e_comm =
new_quotient->existEdge(node(src_comm), node(tgt_comm), false);
total_weight += weight;
double* weight_comm = NULL;
if (!e_comm.isValid()) {
ends = make_pair(node(src_comm), node(tgt_comm));
e_comm = new_quotient->addEdge(node(src_comm), node(tgt_comm));
weight_comm = &((*new_weights)[e_comm]);
*weight_comm = weight;
}
else {
ends = new_quotient->ends(e_comm);
weight_comm = &((*new_weights)[e_comm]);
if (ends.second == node(tgt_comm)) {
*weight_comm += weight;
}
}
// self loop are counted only once
if (src != tgt) {
total_weight += weight;
if (ends.first == node(tgt_comm)) {
*weight_comm += weight;
}
}
}
delete quotient;
delete weights;
quotient = new_quotient;
weights = new_weights;
}
// compute communities of the graph for one level
// return true if some nodes have been moved
bool one_level() {
bool improvement=false ;
int nb_moves;
double new_mod = modularity();
double cur_mod = new_mod;
quotient->shuffleNodes();
// repeat while
// there is an improvement of modularity
// or there is an improvement of modularity greater than a given epsilon
do {
cur_mod = new_mod;
nb_moves = 0;
// for each node:
// remove the node from its community
// and insert it in the best community
for (unsigned int n = 0 ; n <size ; n++) {
unsigned int n_comm = n2c[n];
double n_wdg;
double n_nsl;
get_weighted_degree_and_selfloops(n, n_wdg, n_nsl);
// computation of all neighboring communities of current node
neigh_comm(n);
// remove node from its current community
tot[n_comm] -= n_wdg;
in[n_comm] -= 2*neigh_weight[n_comm] + n_nsl;
// compute the nearest community for node
// default choice for future insertion is the former community
unsigned int best_comm = n_comm;
double best_nblinks = 0.;
double best_increase = 0.;
for (unsigned int i=0 ; i<neigh_last ; i++) {
double increase =
modularity_gain(n, neigh_pos[i], neigh_weight[neigh_pos[i]], n_wdg);
if (increase>best_increase ||
// keep the best cluster with the minimum id
(increase == best_increase && neigh_pos[i] > best_comm)) {
best_nblinks = neigh_weight[neigh_pos[i]];
best_increase = increase;
best_comm = neigh_pos[i];
}
}
// insert node in the nearest community
tot[best_comm] += n_wdg;
in[best_comm] += 2*best_nblinks + n_nsl;
n2c[n] = best_comm;
if (best_comm!=n_comm)
nb_moves++;
}
new_mod = modularity();
if (nb_moves>0)
improvement=true;
}
while ((nb_moves>0) && ((new_mod-cur_mod)>min_modularity));
return improvement;
}
void init_level() {
size = quotient->numberOfNodes();
neigh_weight.resize(size,-1);
neigh_pos.resize(size);
neigh_last=0;
n2c.resize(size);
in.resize(size);
tot.resize(size);
for (unsigned int i=0 ; i < size ; i++) {
n2c[i] = i;
double wdg, nsl;
get_weighted_degree_and_selfloops(i, wdg, nsl);
in[i] = nsl;
tot[i] = wdg;
}
}
};
/*@}*/
//========================================================================================
PLUGIN(LouvainClustering)
//========================================================================================
//========================================================================================
namespace {
const char * paramHelp[] = {
// metric
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "NumericProperty" ) \
HTML_HELP_DEF( "value", "An existing edge metric" ) \
HTML_HELP_BODY() \
"An existing edge weight metric property. If it is not defined all edges have a weight of 1.0."\
// precision
HTML_HELP_CLOSE(),
HTML_HELP_OPEN() \
HTML_HELP_DEF( "type", "double" ) \
HTML_HELP_BODY() \
"A given pass stops when the modularity is increased by less than precision. Default value is <b>0.000001</b>"\
HTML_HELP_CLOSE()
};
}
//========================================================================================
// same precision as the original code
#define DEFAULT_PRECISION 0.000001
LouvainClustering::LouvainClustering(const tlp::PluginContext* context): DoubleAlgorithm(context) {
addInParameter<NumericProperty*>("metric", paramHelp[0], "",false);
addInParameter<double>("precision", paramHelp[1], "0.000001",false);
}
//========================================================================================
bool LouvainClustering::run() {
NumericProperty* metric = NULL;
min_modularity = DEFAULT_PRECISION;
if(dataSet!=NULL) {
dataSet->get("metric", metric);
dataSet->get("precision", min_modularity);
}
// initialize a random sequence according the given seed
tlp::initRandomSequence();
nb_nodes = graph->numberOfNodes();
quotient = new VectorGraph();
tlp::node n;
unsigned int i = 0;
forEach(n, graph->getNodes()) {
clusters[n.id] = i++;
quotient->addNode();
}
weights = new EdgeProperty<double>();
quotient->alloc(*weights);
edge e;
// init total_weight, weights and quotient edges
forEach(e, graph->getEdges()) {
double weight = metric ? metric->getEdgeDoubleValue(e) : 1;
std::pair<node, node> ends = graph->ends(e);
node q_src = node(clusters[ends.first.id]);
node q_tgt = node(clusters[ends.second.id]);
// self loops are counted only once
total_weight += q_src != q_tgt ? 2 * weight : weight;
// create corresponding edge if needed
edge qe = quotient->existEdge(q_src, q_tgt, false);
if (!qe.isValid()) {
qe = quotient->addEdge(q_src, q_tgt);
(*weights)[qe] = weight;
}
else
// set current edge weight
(*weights)[qe] += weight;
}
// init other vectors
init_level();
bool improvement = true;
double mod = modularity(), new_mod;
int level = 0;
bool verbose = false;
do {
if (verbose) {
std::cout << "level " << level << ':' << std::endl;
std::cout << " network size: "
<< size << " nodes, "
<< quotient->numberOfEdges() << " links, "
<< total_weight << " weight." << endl << std::flush;
}
improvement = one_level();
new_mod = modularity();
if (improvement) {
++level;
VectorGraph* new_quotient = new VectorGraph();
EdgeProperty<double>* new_weights = new EdgeProperty<double>();
new_quotient->alloc(*new_weights);
partitionToQuotient(new_quotient, new_weights);
if (verbose)
std::cout << " modularity increased from " << mod
<< " to " << new_mod << endl << std::flush;
mod=new_mod;
init_level();
}
else {
if (verbose)
std::cout << " modularity increased from " << mod
<< " to " << new_mod << endl << std::flush;
// update measure
// Renumber communities
vector<int> renumber(size, -1);
for (unsigned int n=0 ; n<size ; n++) {
renumber[n2c[n]]++;
}
int final=0;
for (unsigned int i=0 ; i<size ; i++)
if (renumber[i]!=-1)
renumber[i]=final++;
// then set measure values
node n;
forEach(n, graph->getNodes()) {
result->setNodeValue(n, renumber[n2c[clusters[n.id]]]);
}
delete quotient;
delete weights;
}
}
while(improvement);
return true;
}
|