1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <tulip/TulipPluginHeaders.h>
#include <cmath>
using namespace tlp;
/** \addtogroup size */
/// AutoSize.cpp - Compute size in order to prevent node-node overlapping
/**
* This plugin compute the size of nodes and edges such that node-node overlapping does not exist (if it is possible).
* and edge sizes are proportional to node sizes.
*
* \author David Auber Bordeaux University France: Email:auber@tulip-software.org
*/
class AutoSize:public SizeAlgorithm {
public:
PLUGININFORMATION("Auto Sizing","Auber","04/05/2001","Resize the nodes and edges of a graph so that the graph gets easy to read. The size of a node will depend on the number of its sons.","1.0", "Size")
AutoSize(const tlp::PluginContext* context):SizeAlgorithm(context) {}
bool run() {
node n;
forEach(n,graph->getNodes())
result->setNodeValue(n, getNodeValue(n));
edge e;
forEach(e,graph->getEdges())
result->setEdgeValue(e, getEdgeValue(e));
return true;
}
private:
Size getNodeValue(const node n) {
LayoutProperty *entryLayout=graph->getProperty<LayoutProperty>("viewLayout");
//Compute the minimal distance to one neighbour.
Iterator<node> *itN=graph->getNodes();
const Coord& tmp1=entryLayout->getNodeValue(n);
double dist=1000;
if (itN->hasNext()) {
node itn=itN->next();
while ((itn==n) && itN->hasNext()) itn=itN->next();
if (itn!=n) {
const Coord& tmp2=entryLayout->getNodeValue(itn);
dist=sqrt((tmp1.getX()-tmp2.getX())*(tmp1.getX()-tmp2.getX())
+(tmp1.getY()-tmp2.getY())*(tmp1.getY()-tmp2.getY())
+(tmp1.getZ()-tmp2.getZ())*(tmp1.getZ()-tmp2.getZ())
);
}
else {
dist=10;
}
}
for (; itN->hasNext();) {
node itn=itN->next();
if (itn!=n) {
const Coord& tmp2=entryLayout->getNodeValue(itn);
double tmpDist=sqrt( (tmp1.getX()-tmp2.getX())*(tmp1.getX()-tmp2.getX())
+(tmp1.getY()-tmp2.getY())*(tmp1.getY()-tmp2.getY())
+(tmp1.getZ()-tmp2.getZ())*(tmp1.getZ()-tmp2.getZ())
);
if (tmpDist<dist) dist=tmpDist;
}
}
delete itN;
return Size(dist/2,dist/2,dist/2);
}
Size getEdgeValue(const edge e) {
Size s = result->getNodeValue(graph->source(e));
Size t = result->getNodeValue(graph->target(e));
Coord tmp(s.getW(),s.getH(),s.getD());
Coord tmp2(t.getW(),t.getH(),t.getD());
float sizes=tmp.norm();
float sizet=tmp2.norm();
return (Size(sizes/16,sizet/16,sizet/4));
}
};
PLUGIN(AutoSize)
|