1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include "ParallelTools.h"
namespace tlp {
static inline float square(float x) {
return x*x;
}
// Given a triangle ABC, this function compute the (AB, AC) angle in degree using Al Kashi theorem
float computeABACAngleWithAlKashi(const Coord &A, const Coord &B, const Coord &C) {
float AB = A.dist(B);
float AC = A.dist(C);
float BC = B.dist(C);
return acos((square(AB)+square(AC)-square(BC)) / (2.0f * AB * AC)) * (180.0f / M_PI);
}
void rotateVector(Coord &vec, float alpha, int rot) {
Coord backupVec(vec);
float aRot = 2.0f * M_PI * alpha / 360.0f;
float cosA = cos(aRot);
float sinA = sin(aRot);
switch(rot) {
case Z_ROT:
vec[0] = backupVec[0]*cosA - backupVec[1]*sinA;
vec[1] = backupVec[0]*sinA + backupVec[1]*cosA;
break;
case Y_ROT:
vec[0] = backupVec[0]*cosA + backupVec[2]*sinA;
vec[2] = backupVec[2]*cosA - backupVec[0]*sinA;
break;
case X_ROT:
vec[1] = backupVec[1]*cosA - backupVec[2]*sinA;
vec[2] = backupVec[1]*sinA + backupVec[2]*cosA;
break;
}
}
Coord *computeStraightLineIntersection(const Coord line1[2], const Coord line2[2]) {
Coord *intersectionPoint = NULL;
bool line1ParallelToXaxis = false;
bool line1ParallelToYaxis = false;
bool line2ParallelToXaxis = false;
bool line2ParallelToYaxis = false;
bool parallelLines = false;
float x, y;
// compute the equation of the first line
// y = al1 * x + bl1
float xal1 = line1[0].getX();
float xbl1 = line1[1].getX();
float yal1 = line1[0].getY();
float ybl1 = line1[1].getY();
float al1 = 0.0f;
float bl1 = 0.0f;
if ((xbl1 - xal1) != 0.0f) {
al1 = (ybl1 - yal1) / (xbl1 - xal1);
bl1 = ybl1 - al1 * xbl1;
}
else {
line1ParallelToYaxis = true;
}
// compute the equation of the second line
// y = al2 * x + bl2
float xal2 = line2[0].getX();
float xbl2 = line2[1].getX();
float yal2 = line2[0].getY();
float ybl2 = line2[1].getY();
float al2 = 0.0f;
float bl2 = 0.0f;
if ((xbl2 - xal2) != 0.0f) {
al2 = (ybl2 - yal2) / (xbl2 - xal2);
bl2 = ybl2 - al2 * xbl2;
}
else {
line2ParallelToYaxis = true;
}
if (!line1ParallelToYaxis && al1 == 0.0f) {
line1ParallelToXaxis = true;
}
if (!line2ParallelToYaxis && al2 == 0.0f) {
line2ParallelToXaxis = true;
}
// compute the intersection point of the two lines if any
if (line1ParallelToXaxis && line2ParallelToYaxis) {
x = xal2;
y = yal1;
}
else if (line2ParallelToXaxis && line1ParallelToYaxis) {
x = xal1;
y = yal2;
}
else if (line1ParallelToXaxis && al2 != 0.0f) {
y = yal1;
x = (y - bl2) / al2;
}
else if (line2ParallelToXaxis && al1 != 0.0f) {
y = yal2;
x = (y - bl1) / al1;
}
else if(line1ParallelToYaxis && !line2ParallelToYaxis) {
x = xal1;
y = al2 * x + bl2;
}
else if(line2ParallelToYaxis && !line1ParallelToYaxis) {
x = xal2;
y = al1 * x + bl1;
}
else if (al1 != al2) {
float d1 = (bl2 - bl1);
float d2 = (al1 - al2);
x = d1 / d2;
y = al1 *x + bl1;
}
else {
parallelLines = true;
}
if (!parallelLines) {
intersectionPoint = new Coord(x, y, 0.0f);
}
return intersectionPoint;
}
}
|