1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
/**
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <climits>
#include "HilbertLayout.h"
using namespace std;
using namespace tlp;
namespace {
typedef tlp::Vector< int, 2> uPoint;
enum STATESID {KEY = 1, POINT = 0, NEXT = 2};
static const unsigned char states[4][3][4] = { { {0, 1, 3, 2},
{0, 1, 3, 2},
{1, 0, 0, 2}
},
{ {0, 3, 1, 2},
{0, 2, 3, 1},
{0, 1, 1, 3}
},
{ {2, 1, 3, 0},
{3, 1, 0, 2},
{3, 2, 2, 0}
},
{ {2, 3, 1, 0},
{3, 2, 0, 1},
{2, 3, 3, 1}
}
};
inline uPoint hilbertPoint(const unsigned int key, const unsigned char order) {
// cerr << "========" << endl;
unsigned char state = 0;
uPoint point;
point.fill(0);
for (char i = order - 1; i >= 0; --i) {
//read two bits;
unsigned char bits = (key >> (i << 1)) & 3;
// unsigned char co = grState.graph[state].key[bits];
unsigned char co = states[state][KEY][bits];
// cerr << "state :" << (int) state << " bits" << bits << " co:" << (int)co;
point[1] += (co & 1) << i;
// point[0] += ((co >> 1) & 1) << (i-1);
point[0] += ((co >> 1) ) << i;
// state = grState.graph[state].next[bits];
state = states[state][NEXT][bits];
// cerr << " next state :" << (int)state << endl;
}
return point;
}
inline unsigned int hilbertKey(const uPoint &p, const unsigned char order) {
// cerr << "========" << endl;
unsigned char state = 0;
unsigned int key = 0;
for (char i = order - 1; i >= 0; --i) {
//read two bits;
unsigned char bits = (p[1] >> i) & 1;
bits += ((p[0] >> i) & 1) << 1;
// cerr << "p:" << p << " bits:" << bits << endl;
// unsigned char co = grState.graph[state].point[bits];
unsigned char co = states[state][POINT][bits];
// cerr << "state :" << (int) state << " bits" << bits << " co:" << (int)co;
key += co << (i << 1);
// state = grState.graph[state].next[co];
state = states[state][NEXT][co];
// cerr << " next state :" << (int)state << endl;
}
return key;
}
}
namespace pocore {
HilbertLayout::HilbertLayout(unsigned char order):order(order) {
shift = int(rint(sqrt(pow(4., order))/2.));
}
//==============================================================
unsigned int HilbertLayout::unproject(const Vec2i &point) const {
// cerr << point << " ==> " << shift << " order=" << (int)order << endl;
Vec2i p;
if (point[0] <= -shift || point[0] >= shift)
return UINT_MAX;
if (point[1] <= -shift || point[1] >= shift)
return UINT_MAX;
p[0] = point[0] + shift;
p[1] = point[1] + shift;
return hilbertKey(p, order);
}
//==============================================================
Vector<int, 2> HilbertLayout::project(const unsigned int id) const {
return hilbertPoint(id, order)-=shift;
}
}
//==============================================================================
|