File: SOMAlgorithm.cpp

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (266 lines) | stat: -rw-r--r-- 7,701 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/**
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */

#include <ctime>

#include "SOMAlgorithm.h"
#include "SOMMap.h"
#include "InputSample.h"

#include <tulip/DoubleProperty.h>
#include <tulip/IntegerProperty.h>
#include <tulip/ColorProperty.h>
#include <tulip/GlyphManager.h>
#include <tulip/ForEach.h>
#include <tulip/TlpTools.h>

using namespace tlp;
using namespace std;

SOMAlgorithm::SOMAlgorithm(TimeDecreasingFunction* learningRateFunction, DiffusionRateFunction* diffusionRateFunction) :

  learningRateFunction(learningRateFunction), diffusionRateFunction(diffusionRateFunction) {

  //Init default degenerescence functions if user don't do it
  if (this->learningRateFunction == NULL)
    this->learningRateFunction = new TimeDecreasingFunctionSimple(0.7);

  if (this->diffusionRateFunction == NULL)
    this->diffusionRateFunction = new DiffusionRateFunctionSimple(
      new TimeDecreasingFunctionSimple(0.7), 3);

}

SOMAlgorithm::~SOMAlgorithm() {
  delete learningRateFunction;
  delete diffusionRateFunction;

}

#define RANDNUM(max) (int)(max*(rand()/(RAND_MAX+1.0)))

void SOMAlgorithm::run(SOMMap* map, InputSample& inputSample, unsigned int nTimes,
                       tlp::PluginProgress *pluginProgress) {
  //Map initialisation
  if (pluginProgress)
    pluginProgress->setComment("Initialization");

  initMap(map, inputSample, pluginProgress);

  if (pluginProgress)
    pluginProgress->setComment("Training");

  trainNInputSample(map, inputSample, nTimes, pluginProgress);

  //registering modification
  map->registerModification(inputSample.getListenedProperties());

}

/**
 * For each node in the map use a random value
 */
void SOMAlgorithm::initMap(SOMMap* map, InputSample& inputSample,
                           tlp::PluginProgress *pluginProgress) {
  // initialize a random sequence according the given seed
  tlp::initRandomSequence();

  node n;
  int numberOfNode = map->numberOfNodes();
  int currentNumberOfNode = 0;
  Iterator<node> *nodeIterator = inputSample.getRandomNodeOrder();
  forEach(n,map->getNodes()) {
    if (!nodeIterator->hasNext()) {
      delete nodeIterator;
      nodeIterator = inputSample.getRandomNodeOrder();
    }

    //Ramdom choice
    map->setWeight(n, inputSample.getWeight(nodeIterator->next()));

    if (pluginProgress) {
      //Increase the number of iterators why?
      pluginProgress->progress(currentNumberOfNode, numberOfNode);
    }

    ++currentNumberOfNode;
  }
  delete nodeIterator;
}

void SOMAlgorithm::trainNInputSample(SOMMap* map, InputSample& inputSample, unsigned int nTimes,
                                     tlp::PluginProgress *pluginProgress) {
  train(map, inputSample, nTimes * inputSample.getSampleSize(), pluginProgress);
}

void SOMAlgorithm::train(SOMMap* map, InputSample& inputSample, unsigned int maxIteration,
                         tlp::PluginProgress *pluginProgress) {
  assert( learningRateFunction);
  assert( diffusionRateFunction);
  unsigned int currentIteration = 0;
  Iterator<node>* nodeIterator = inputSample.getRandomNodeOrder();

  while (currentIteration < maxIteration) {
    //Find BMU
    double dist;

    if (!nodeIterator->hasNext()) {
      delete nodeIterator;
      nodeIterator = inputSample.getRandomNodeOrder();
    }

    const DynamicVector<double>& currentInputVector = inputSample.getWeight(
          nodeIterator->next());

    node bmu = findBMU(map, currentInputVector, dist);

    //Environment modification
    assert(map->isElement(bmu));

    propagateModification(map, currentInputVector, bmu, currentIteration, maxIteration,
                          inputSample.getSampleSize());

    //Next Iteration
    ++currentIteration;

    if (pluginProgress)
      pluginProgress->progress(currentIteration, maxIteration);
  }

  delete nodeIterator;
}

node SOMAlgorithm::findBMU(SOMMap* map, const DynamicVector<double>& input, double &dist) {
  vector<node> matchList;
  node n;
  double bestDist;
  Iterator<node> *gridNodes = map->getNodes();
  //take the first to init the comparaison
  n = gridNodes->next();
  matchList.push_back(n);
  bestDist = input.dist(map->getWeight(n));

  while (gridNodes->hasNext()) {
    n = gridNodes->next();
    double newDist = input.dist(map->getWeight(n));

    if (newDist < bestDist) {
      bestDist = newDist;
      matchList.clear();
      matchList.push_back(n);
    }
    else if (newDist == bestDist) {
      matchList.push_back(n);
    }
  }

  delete gridNodes;

  dist = bestDist;
  assert(!matchList.empty());

  if (matchList.size() == 1) {
    n = matchList.front();
  }
  else {
    //Take randomly a vector in the matchlist.
    unsigned int num = RANDNUM(matchList.size()-1);
    assert(num < matchList.size());
    n = matchList[num];
  }

  assert(n.isValid());
  assert(map->isElement(n));
  return n;
}

void SOMAlgorithm::propagateModification(SOMMap* map, const DynamicVector<double>& input, node bmu,
    unsigned int currentIteration, unsigned int maxIteration, unsigned int sampleSize) {

  //Parcour en largeur
  MutableContainer<bool> seen;
  seen.setAll(false);
  MutableContainer<int> distance;
  distance.setAll(0);
  deque<node> toVisit;

  toVisit.push_back(bmu);
  seen.set(bmu.id, true);

  //Computing learning rate for this propagation
  double learningRate = learningRateFunction->computeCurrentTimeRate(currentIteration,
                        maxIteration, sampleSize);

  if (learningRate == 0)
    return;

  //Treatment of the deque
  while (!toVisit.empty()) {
    node current = toVisit.front();
    toVisit.pop_front();

    assert(current.isValid());
    assert(map->isElement(current));
    //Treat its value
    DynamicVector<double> weight = map->getWeight(current);
    assert(weight.getSize() != 0);
    double diffusionRate = diffusionRateFunction->computeSpaceRate(distance.get(current.id),
                           currentIteration, maxIteration, sampleSize);

    //Diffusion function
    weight = weight + ((input - weight) * learningRate * diffusionRate);
    map->setWeight(current, weight);

    //Mark neighborhood
    //If the diffusion rate is equal to 0 no need to propagate modification
    if (diffusionRate > 0) {
      node neighbor;
      forEach   (neighbor,map->getInOutNodes(current)) {
        //not already treated
        if (!seen.get(neighbor.id)) {
          seen.set(neighbor.id, true);
          distance.set(neighbor.id, distance.get(current.id) + 1);
          toVisit.push_back(neighbor);
        }
      }
    }
  }

}

void SOMAlgorithm::computeMapping(SOMMap* map, InputSample& inputSample, std::map<tlp::node,
                                  std::set<tlp::node> >& mappingTab, double& medDist, unsigned int& maxElement) {

  double cumDist = 0;
  double dist;
  maxElement = 0;

  node n;

  forEach(n,inputSample.getNodes()) {
    node somNode = findBMU(map, inputSample.getWeight(n), dist);
    cumDist += dist;
    mappingTab[somNode].insert(n);

    if (mappingTab[somNode].size() > maxElement)
      maxElement = mappingTab[somNode].size();
  }
  medDist = cumDist / inputSample.getSampleSize();
}