File: BinaryHeap2.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (526 lines) | stat: -rw-r--r-- 15,008 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/*
 * $Revision: 3609 $
 *
 * last checkin:
 *   $Author: beyer $
 *   $Date: 2013-07-01 20:33:08 +0200 (Mon, 01 Jul 2013) $
 ***************************************************************/

/** \file
 * \brief Implementation of binary heap class that allows the
 * decreaseKey operation.
 *
 * \author Karsten Klein
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/

#ifdef _MSC_VER
#pragma once
#endif

#ifndef OGDF_BINARY_HEAP2_H
#define OGDF_BINARY_HEAP2_H

#include <ogdf/basic/HeapBase.h>

namespace ogdf {

/**
 * \brief Min-heap priority queue realized by a data array.
 *
 * Heaps store objects that are weighted with costs;
 * the minimal cost object is accessible over
 * member function minRet() and extracted by extractMin().
 *
 * The class uses two template parameters:
 *   - \a key is the key type.
 *   - \a HeapElement is the type of the elements that are stored.
 *
 * HeapObjects can be all types with copy constructor,
 * as copies of inserted elements are created;
 * \a key should be of a type with compare operators.
 * We only allow integer as index/size type; the array index starts with 1.
 *
 * To allow direct access to the underlying array structure
 * in order to minimize decreaseKey() runningtime,
 * a pointer to an integer storage can be provided as input()
 * parameter that will be kept updated with the index position
 * during heap operations.
 *
 * <H3>Running Time</H3>
 * The worst case running times of the methods is given by the following
 * table, where \a n is the current number of elements.
 *
 * <table>
 *   <tr>
 *     <th>method<th>worst-case<th>amortized
 *   </tr><tr>
 *     <td>extractMin()<td>O(n)<td>O(lg(\a n))
 *   </tr><tr>
 *     <td>siftDown()<td>O(lg(\a n))<td>
 *   </tr><tr>
 *     <td>siftUp()<td>O(lg(\a n))<td>
 *   </tr><tr>
 *     <td>minRet()<td>O(1)<td>
 *   </tr><tr>
 *     <td>insert()<td>O(\a n)<td>O(lg(\a n))
 *   </tr>
 * </table>
 */


//to allow directobject adress, a pointer to an integer storage
//can be provided, where the array index is updated by the
//heap class


template <class key, class HeapObject>
class BinaryHeap2 : public HeapBase<key, HeapObject>
{
public:
	//! Creates a binary heap.
	BinaryHeap2(int startSize = 128);

	//copy Constructor, todo
	//BinaryHeap2(const BinaryHeap2& source);

	// Destructor, deletes the heap array.
	virtual ~BinaryHeap2() {
		if (m_heapArray) delete[] m_heapArray;
	}//destructor


	//! Assignment operator.
	const BinaryHeap2& operator=(const BinaryHeap2<key, HeapObject>& rhs);

	//------------------------------------------------------------
	//modification:

	//! Inserts a new element \a obj with priority \a p and pointer for index update.
	void insert(const HeapObject& obj, key& p, int* keyUpdate = 0);

	//! Obtains heap property, only needed if the elements are not inserted by insert method.
	virtual void makeHeap();
	//delete
	//it is not clear how a delete without explicit
	//given heapentry pointer  should behave, e.g. if equal values
	//for objects are allowed

	//! Returns minimum priority element and removes it from the heap.
	// arraySize is decreased if size < 1/3arraySize (amortized runtime O(1))
	HeapObject extractMin();

	//! Decreases priority of an object that is addressed by \a index.
	// use updated m_foreign position index to address entry for decreasekey
	virtual void decreaseKey(int index, key priority);
	//TODO: version mit Aenderungswert statt absolutem Wert

	//--------------------------------------------------------------
	//const access functions

	//! Returns minimum priority element.
	HeapObject minRet() const {return m_heapArray[1].m_object;}

	key getPriority(int index) const
	{
		OGDF_ASSERT( (index > 0) && (index <= HeapBase<key,HeapObject>::m_size) );
		return m_heapArray[index].m_priority;
	}//getPriority

	//! Returns the current size.
	int capacity() const { return m_arraySize; }

	//! Returns the number of stored elements.
	int size() const { return HeapBase<key,HeapObject>::m_size; }

	//! Returns true iff the heap is empty.
	int empty() const { return HeapBase<key,HeapObject>::empty(); }

	//! Reinitializes the data structure.
	/**
	 * Deletes the array and reallocates it with size that was passed at
	 * construction time.
	 */
	void clear();

protected:
	//! Establishes heap property by moving element up in heap if necessary.
	void siftUp(int pos);

	//! Establishes heap property by moving element down in heap if necessary.
	void siftDown(int pos);

	//----------------------------------------------------------
	//modelling the binary tree structure on the data array
	//array position 0 is left empty, positions are from 1..m_size
	//! Array index of parent node.
	int parentIndex(int num)
	{
		OGDF_ASSERT(num>0);
		return num/2;
	}//parent

	//! Array index of left child.
	int leftChildIndex(int num)
	{
		OGDF_ASSERT(num>0);
		return 2*num;
	}//leftChild

	//! Array index of right child.
	int rightChildIndex(int num)
	{
		OGDF_ASSERT(num>0);
		return 2*num+1;
	}//rightChild

	//! Returns true if left child exists.
	bool hasLeft(int num)
	{
		OGDF_ASSERT(num>0);
		return (leftChildIndex(num) <= HeapBase<key,HeapObject>::m_size);
	}

	//! Returns true if right child exists.
	bool hasRight(int num)
	{
		OGDF_ASSERT(num>0);
		return (rightChildIndex(num) <= HeapBase<key,HeapObject>::m_size);
	}

	//----------------------------------------------------------
	//helper functions for internal maintainance
	int arrayBound(int arraySize) {return arraySize+1;}
	int higherArrayBound(int arraySize) {return 2*arraySize+1;}
	int higherArraySize(int arraySize) {return 2*arraySize;}
	int lowerArrayBound(int arraySize) {return arraySize/2+1;}
	int lowerArraySize(int arraySize) {return arraySize/2;}

	void init(int initSize);

private:
	//holding object and priority key
	struct HeapEntry
	{
		key m_priority;
		HeapObject m_object;

		//we maintain positions during operations
		int m_pos;
		int* m_foreignPos; //storage structure given by user

		//! Initializes HeapEntry object.
		HeapEntry() {m_priority = 0;
		m_pos = 0;
		m_foreignPos = 0;
		}

		//! Initializes HeapEntry object with priority.
		/**
		* @param k ist the priority.
		* @param ob is the corresponding HeapObject.
		*/
		HeapEntry(key k, const HeapObject& ob) {m_priority = k; m_object = ob;
		m_foreignPos = 0;
		//m_pos = ob.m_pos;
		}

		//! Initializes HaepEntry object with priority.
		/**
		* @param k ist the priority.
		* @param ob is the corresponding HeapObject.
		* @param pos is the position of the object within the array.
		* @param fp is a pointer to the index.
		*/
		HeapEntry(key k, const HeapObject& ob, int pos, int* fp)
		{
			m_priority = k;
			m_object = ob;
			if (fp == 0) m_foreignPos = 0;
			else m_foreignPos = fp;
			m_pos = pos;
		}
	};

	HeapEntry* m_heapArray; //dynamically maintained array of heapentries

	//in addition to m_size, the inherited number of objects from class HeapBase,
	//we store the actual size of the array, valid array object positions
	//are from 1 to m_size
	int m_arraySize; //current size of the heap

	int m_startSize; //(decide: optionally??) used to check reallocation bound

};//BinaryHeap2



//**************************************************************
//implementation
//**************************************************************


//**************************************************************
//constructor and initialization
template <class key, class HeapObject>
BinaryHeap2<key, HeapObject>::BinaryHeap2(int startSize)
: HeapBase<key, HeapObject>()
{
	init(startSize);
}//constructor


template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::init(int initSize)
{
	//create an array of HeapEntry Elements
	m_arraySize = initSize;
	m_heapArray = new HeapEntry[arrayBound(m_arraySize)]; //start at 1

	m_startSize = initSize;

	HeapBase<key,HeapObject>::m_size = 0;
}


template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::clear()
{
	if (m_heapArray) delete[] m_heapArray;
	init(m_startSize);
}


//**************************************************************
//element shifting operations
//restore heap property by finding correct position for object
//at position pos on higher levels, pos is given as array index (1..m_size)
//updates array index values
template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::siftUp(int pos)
{
	OGDF_ASSERT( (pos > 0) && (pos <= HeapBase<key,HeapObject>::m_size) )

		if (pos == 1)
		{
			m_heapArray[1].m_pos = 1;
			if (m_heapArray[1].m_foreignPos != 0) //address is defined
				*(m_heapArray[1].m_foreignPos) = 1;
			return;//nothing to do
		}

		HeapEntry tempEntry = m_heapArray[pos];
		int run = pos;
		while ( (parentIndex(run) >= 1) &&
			(m_heapArray[parentIndex(run)].m_priority > tempEntry.m_priority) )
		{
			m_heapArray[run] = m_heapArray[parentIndex(run)];
			if (m_heapArray[run].m_foreignPos != 0) *(m_heapArray[run].m_foreignPos) = run;
			run = parentIndex(run);
		}//while

		m_heapArray[run] = tempEntry;
		m_heapArray[run].m_pos = run;
		if (m_heapArray[run].m_foreignPos != 0) *(m_heapArray[run].m_foreignPos) = run;


}//siftup


//restore heap property by finding correct position for object
//at position pos on lower levels, updates array index values
template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::siftDown(int pos)
{
	OGDF_ASSERT( (pos > 0) && (pos <= HeapBase<key,HeapObject>::m_size) );

	if (pos >= int(HeapBase<key,HeapObject>::m_size/2)+1)
	{
		m_heapArray[pos].m_pos = pos;
		if (m_heapArray[pos].m_foreignPos != 0) *(m_heapArray[pos].m_foreignPos) = pos;
		return; //leafs cant move down
	}//if leaf

	key sPrio = getPriority(pos);
	int sIndex = pos;

	if (hasLeft(pos) && (getPriority(leftChildIndex(pos)) < sPrio) )
	{
		sIndex = leftChildIndex(pos);
		sPrio = getPriority(leftChildIndex(pos));
	}//if left child smaller
	if (hasRight(pos) && (getPriority(rightChildIndex(pos)) < sPrio) )
	{
		sIndex = rightChildIndex(pos);
		sPrio = getPriority(rightChildIndex(pos));
	}//if right child smaller

	if (sIndex != pos)
	{
		HeapEntry tempEntry = m_heapArray[pos];
		m_heapArray[pos] = m_heapArray[sIndex];
		m_heapArray[sIndex] = tempEntry;

		//update both index entries
		m_heapArray[pos].m_pos = pos;
		if (m_heapArray[pos].m_foreignPos != 0) *(m_heapArray[pos].m_foreignPos) = pos;
		m_heapArray[sIndex].m_pos = sIndex;
		if (m_heapArray[sIndex].m_foreignPos != 0) *(m_heapArray[sIndex].m_foreignPos) = sIndex;

		siftDown(sIndex); //TODO: dont use recursion
	}//if sift necessary
	else  //update in case of new elements (non-insert)
	{
		m_heapArray[pos].m_pos = pos;
		if (m_heapArray[pos].m_foreignPos != 0) *(m_heapArray[pos].m_foreignPos) = pos;
	}//else
}//siftdown


template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::makeHeap()
{
	//only needed if insertion is not done over insert
	//(if we allow array parameter in constructor)
	for (int i=HeapBase<key,HeapObject>::m_size/2; i > 0; i--)
		siftDown(i);
}//makeheap


template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::decreaseKey(int index, key priority)
{
	HeapEntry& he = m_heapArray[index];

	//check if error value
	if (he.m_priority < priority) OGDF_THROW_PARAM(AlgorithmFailureException, afcIllegalParameter);

	he.m_priority = priority;
	siftUp(index);

}//decreaseKey


//extract the minimum priority object and reallocate array if size < 1/3 arraysize
template <class key, class HeapObject>
HeapObject BinaryHeap2<key, HeapObject>::extractMin()
{
	OGDF_ASSERT((!HeapBase<key,HeapObject>::empty()));

	HeapEntry tempEntry = m_heapArray[1]; //save minimum object

	HeapBase<key,HeapObject>::m_size--;

	if (HeapBase<key,HeapObject>::m_size > 0)
	{
		m_heapArray[1] = m_heapArray[HeapBase<key,HeapObject>::m_size+1]; //old last leaf

		//check if reallocation is possible
		if ((HeapBase<key,HeapObject>::m_size < (m_arraySize/3)) && (m_arraySize > 2*m_startSize-1))
		{
			HeapEntry* tempHeap = new HeapEntry[lowerArrayBound(m_arraySize)];
			for (int i = 1; i <= HeapBase<key,HeapObject>::m_size ; i++)
				tempHeap[i] = m_heapArray[i];
			delete[] m_heapArray;
			m_heapArray = tempHeap;
			m_arraySize = lowerArraySize(m_arraySize);

		}//if small enough

		//restore tree by sifting down old leaf
		siftDown(1);
	}//if not empty

	return tempEntry.m_object;

}//extractMin


//place a copy of the given input element in the queue, doubles
//array size if necessary
template <class key, class HeapObject>
void BinaryHeap2<key, HeapObject>::insert(const HeapObject& ho, key& priority, int* keyUpdate)
{
	OGDF_ASSERT((HeapBase<key,HeapObject>::m_size) < m_arraySize);
	HeapBase<key,HeapObject>::m_size++;
	//check if the array size has to be adjusted
	if (HeapBase<key,HeapObject>::m_size == m_arraySize)
	{
		HeapEntry* tempHeap = new HeapEntry[higherArrayBound(m_arraySize)];
		for (int i = 1; i <= m_arraySize ; i++) //last one is not occupied yet
			tempHeap[i] = m_heapArray[i];
		delete[] m_heapArray;
		m_heapArray = tempHeap;
		m_arraySize = higherArraySize(m_arraySize);

	}//if array full

	//now insert object and reestablish heap property
	m_heapArray[HeapBase<key,HeapObject>::m_size] = HeapEntry(priority, ho, HeapBase<key,HeapObject>::m_size, keyUpdate);

	siftUp(HeapBase<key,HeapObject>::m_size);

}//insert



template <class key, class HeapObject>
const BinaryHeap2<key, HeapObject>& BinaryHeap2<key, HeapObject>::operator=(const BinaryHeap2<key, HeapObject>& rhs)
{
	if (this != &rhs)
	{
		if (m_heapArray && !(m_arraySize == rhs.m_arraySize))
		{
			delete[] m_heapArray;
			m_heapArray = 0;
		}//if

		if (!m_heapArray)
			m_heapArray = new HeapEntry[arrayBound(rhs.m_arraySize)]; //start at 1

		OGDF_ASSERT(m_heapArray);

		HeapBase<key,HeapObject>::m_size = rhs.m_size;

		m_startSize = rhs.m_startSize;
		m_arraySize = rhs.m_arraySize;

		for (int i = 1; i <= HeapBase<key,HeapObject>::m_size ; i++)
			m_heapArray[i] = rhs.m_heapArray[i];

	}//if not self
	return *this;
}



}//namespace ogdf

#endif