1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*
* $Revision: 3516 $
*
* last checkin:
* $Author: klein $
* $Date: 2013-05-30 09:21:59 +0200 (Thu, 30 May 2013) $
***************************************************************/
/** \file
* \brief Declares & Implements Binary Heap, and Top10Heap
*
* \author Markus Chimani
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_MIN_HEAP_H
#define OGDF_MIN_HEAP_H
#include<ogdf/basic/Array.h>
#include<ogdf/basic/comparer.h>
namespace ogdf {
#if 0
//! Augments any data elements of type \a X with keys of type \a Score.
/**
* Also defines comparator function using the keys.
* This class is intended as a helpful convenience class for using with BinaryHeapSimple, Top10Heap,..
*/
template<class X, class Priority=double> class Prioritized {
X x;
Priority p;
public:
//! Constructor of empty element. Be careful!
Prioritized() : x(0), p(0) { }
//! Constructor using a key/value pair
Prioritized(X xt, Priority pt) : x(xt),p(pt) { }
//! Copy-constructor
Prioritized(const Prioritized& P) : x(P.x),p(P.p) { }
//! Returns the key of the element
Priority priority() const { return p; }
//! Returns the data of the element
X item() const { return x;}
//! Comparison operator based on the compare-operator for the key type (\a Priority)
bool operator<(const Prioritized<X,Priority>& P) const { return p<P.p; }
//! Comparison operator based on the compare-operator for the key type (\a Priority)
bool operator<=(const Prioritized<X,Priority>& P) const { return p<=P.p; }
//! Comparison operator based on the compare-operator for the key type (\a Priority)
bool operator>(const Prioritized<X,Priority>& P) const { return p>P.p; }
//! Comparison operator based on the compare-operator for the key type (\a Priority)
bool operator>=(const Prioritized<X,Priority>& P) const { return p>=P.p; }
//! Comparison operator based on the compare-operator for the key type (\a Priority)
bool operator==(const Prioritized<X,Priority>& P) const { return p==P.p; }
//! Comparison operator based on the compare-operator for the key type (\a Priority)
bool operator!=(const Prioritized<X,Priority>& P) const { return p!=P.p; }
};
#endif //moved class
//! Dynamically growing binary heap tuned for efficiency on a small interface (compared to BinaryHeap).
/**
* It assumes that the data-elements are themselves comparable, i.e., the compare-function
* of the items implicitly defines the keys. Hence this datastructure allows no key-changing
* operations (decreaseKey, etc.).
*
* The heap grows (using doubling) dynamically, if there are more elements added. Furthermore,
* BinaryHeapSimple allows to be directly indexed using traditional array-syntax, e.g., for iterating over
* all its elements.
*
* If your intended datastructure does not offer a (suitable) compare function, but you have
* certain key-values (scores, etc.), you may want to use the convenience-class
* Prioritized < Score,X > to bind both together and use within BinaryHeapSimple.
*/
template<class X, class INDEX = int>
class BinaryHeapSimple {
private:
Array<X,INDEX> data; // array starts at index 1
INDEX num;
public:
//! Construtor, giving initial array size
BinaryHeapSimple(INDEX size) : data(1, size), num(0) {}
//! Returns true if the heap is empty
bool empty() const { return num == 0; }
//! Returns the number of elements in the heap
INDEX size() const { return num; }
//! empties the heap [O(1)]
void clear() { num = 0; }
//! Returns a reference to the top (i.e., smallest) element of the heap. It does not remove it. [Same as getMin(), O(1)]
const X& top() const {
return data[1];
}
//! Returns a reference to the top (i.e., smallest) element of the heap. It does not remove it. [Same as top(), O(1)]
inline const X& getMin() const {
return top();
}
//! Adds an element to the heap [Same as insert(), O(log n)]
void push(X& x) {
X y;
if(num == capacity())
data.grow(capacity(),y); // double the size & init with nulls
data[++num] = x;
heapup(num);
}
//! Adds an element to the heap [Same as push(), O(log n)]
inline void insert(X& x) {
push(x);
}
//! Returns the top (i.e., smallest) element and removed it from the heap [Same as extractMin(), O(log n)]
X pop() {
data.swap(1, num--);
heapdown();
return data[num+1];
}
//! Returns the top (i.e., smallest) element and removed it from the heap [Same as pop(), O(log n)]
inline X extractMin() {
return pop();
}
//! obtain const references to the element at index \a idx (the smallest array index is 0, as for traditional C-arrays)
const X& operator[](INDEX idx) const {
return data[idx+1];
}
protected:
//! Returns the current array-size of the heap, i.e., the number of elements which can be added before the next resize occurs.
INDEX capacity() const { return data.size(); }
void heapup(INDEX idx) {
INDEX papa;
while( (papa = idx/2) > 0) {
if( data[papa] > data[idx] ) {
data.swap(papa, idx);
idx = papa;
} else return; //done
}
}
void heapdown() {
INDEX papa = 1;
INDEX son;
while(true) {
if( (son = 2*papa) < num && data[son+1] < data[son] )
son++;
if( son <= num && data[son] < data[papa]) {
data.swap(papa, son);
papa = son;
} else return;
}
}
};
//! A variant of BinaryHeapSimple which always holds only the X (e.g. X=10) elements with the highest keys.
/**
* It assumes that the data-elements are themselves comparable, i.e., the compare-function
* of the items implicitly defines the keys.
*
* If your intended datastructure do not directly offer a compare function, but you have
* certain key-values (scores, etc.), you may want to use the convenience-class
* Prioritized < Priority,X > to bind both together and use within BinaryHeapSimple.
*/
template<class X, class INDEX = int>
class Top10Heap : protected BinaryHeapSimple<X,INDEX> { // favors the 10 highest values...
public:
//! The type for results of a Top10Heap::push operation
enum PushResult { Accepted, Rejected, Swapped };
//! Convenience function: Returns true if the PushResults states that the newly pushed element is new in the heap
static bool successful(PushResult r) { return r != Rejected; }
//! Convenience function: Returns true if the PushResults states that push caused an element to be not/no-longer in the heap
static bool returnedSomething(PushResult r) { return r != Accepted; }
//! Constructor generating a heap which holds the 10 elements with highest value ever added to the heap
Top10Heap() : BinaryHeapSimple<X,INDEX>(10) {}
//! Constructor generating a heap which holds the \a size elements with highest value ever added to the heap
Top10Heap(INDEX size) : BinaryHeapSimple<X,INDEX>(size) {}
//! Returns true if the heap contains no elements
bool empty() const { return BinaryHeapSimple<X,INDEX>::empty(); }
//! Returns true if the heap is completely filled (i.e. the next push operation will return something)
bool full() const { return size() == capacity(); }
//! Returns the number of elements in the heap
INDEX size() const { return BinaryHeapSimple<X,INDEX>::size(); }
//! Returns the size of the heap specified when constructing: this is the number of top elements stored.
INDEX capacity() const { return BinaryHeapSimple<X,INDEX>::capacity(); }
//! empties the heap
void clear() { BinaryHeapSimple<X,INDEX>::clear(); }
//! Tries to push the element \a x onto the heap (and may return a removed element as \a out).
/**
* If the heap is not yet completely filled, the pushed element is accepted and added to the heap.
* The function returns \a Accepted, and the \a out parameter is not touched.
*
* If the heap is filled and the key of the pushed element is too small to be accepted
* (i.e. the heap is filled with all larger elements), then the element if rejected: The funtion
* returns \a Rejected, and the \a out parameter is set to \a x.
*
* If the heap is filled and the key of the pushed element is large enough to belong to the top
* elements, the element is accepted and the currently smallest element in the heap is removed
* from the heap. The function returns \a Swapped and sets the \a out parameter to the element
* removed from the heap.
*
* You may want to use the convenience funtions \a successful and \a returnedSomething on the
* return-value if you are only interested certain aspects of the push.
*/
PushResult push(X& x, X& out) { // returns element that got kicked out - out is uninitialized if heap wasn't full (i.e. PushResult equals Accepted)
PushResult ret = Accepted;
if(capacity() == size()) {
if(BinaryHeapSimple<X,INDEX>::top() >= x) {// reject new item since it's too bad
out = x;
return Rejected;
}
out = BinaryHeapSimple<X,INDEX>::pop(); // remove worst first
ret = Swapped;
}
BinaryHeapSimple<X,INDEX>::push(x);
return ret;
}
//! Alternative name for push().
inline PushResult insert(X& x, X& out) {
return push(x, out);
}
//! Simple (and slightly faster) variant of Top10Heap::push.
/**
* The behavior is the identical to Top10Heap::push, but there is nothing reported to the outside
*/
void pushBlind(X& x) {
if(capacity() == size()) {
if(BinaryHeapSimple<X,INDEX>::top() >= x) // reject new item since it's too bad
return;
BinaryHeapSimple<X,INDEX>::pop(); // remove worst first
}
BinaryHeapSimple<X,INDEX>::push(x);
}
//! Alternative name for pushBlind().
inline void insertBlind(X& x) {
pushBlind(x);
}
//! obtain const references to the element at index \a idx
/**
* The smallest array index is 0, as for traditional C-arrays.
* Useful, e.g., when iterating through the final heap elements.
*/
const X& operator[](INDEX idx) const { // ATTN: simulate index starting at 0, to be "traditional" to the outside!!!
return BinaryHeapSimple<X,INDEX>::operator[](idx);
}
};
//! A variant of Top10Heap which deletes the elements that get rejected from the heap
/**
* The datastructure of course requires the stored data-elements to be pointers (in order to be deletable when
* rejected). Hence the template parameter only specifies the data-type, without stating axplicitly that we
* considere pointers to the structure.
*
* The datastructure also allows for non-duplicate insertions, i.e., a new element can be rejected if it is
* already in the heap. Note that only the compare function has to work
*/
template<class X, class Priority=double, class STATICCOMPARER=StdComparer<X>, class INDEX = int >
class DeletingTop10Heap : public Top10Heap<Prioritized<X*,Priority>,INDEX > {
public:
//! Construct a DeletingTop10Heap of given maximal capacity
DeletingTop10Heap(int size) : Top10Heap<Prioritized<X*, Priority>,INDEX >(size) {}
//! Inserts the element \a x into the heap with priority \a val and deletes the element with smallest priority if the heap is full
/**
* Like the Top10Heap, this function pushes the element \a x onto the heap with priority \a val, and extracts the element with
* smallest priority if the heap was already full. In contrast to the Top10Heap, this element which leaves the heap (or \a x
* itself if its priority was below all the priorities in the heap) gets deleted, i.e., removed from memory.
*/
void pushAndDelete(X* x, Priority p) {
Prioritized<X*, Priority> vo;
Prioritized<X*, Priority> nv(x, p);
if(this->returnedSomething( Top10Heap<Prioritized<X*, Priority>,INDEX >::push(nv, vo) ))
delete vo.item();
}
//! Alternative name for pushAndDelete().
inline void insertAndDelete(X* x, Priority p) {
pushAndDelete(x, p);
}
//! Analogous to pushandDelete(), but furthermore rejects (and deletes) an element if an equal element is already in the heap.
/**
* This function takes linear time in the worst case, and uses the \a compare function of the specified COMP template
* paremeter class, which can be any function returning \a true if two objects should be considered equal, and \a false otherwise.
*/
void pushAndDeleteNoRedundancy(X* x, Priority p) {
for(INDEX i = Top10Heap<Prioritized<X*,Priority>,INDEX >::size(); i-->0;) {
X* k = Top10Heap<Prioritized<X*,Priority>,INDEX >::operator[](i).item();
// OGDF_ASSERT( x )
// OGDF_ASSERT( k )
if(TargetComparer<X,STATICCOMPARER>::equal(k,x)) {
delete x;
return;
}
}
pushAndDelete(x, p);
}
//! Alternative name for pushAndKillNoRedundancy().
inline void insertAndDeleteNoRedundancy(X* x, Priority p) {
pushAndDeleteNoRedundancy(p, x);
}
};
} // end namespace ogdf
#endif
|