1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/*
* $Revision: 3951 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2014-03-03 13:57:46 +0100 (Mon, 03 Mar 2014) $
***************************************************************/
/** \file
* \brief Declaration and implementation of class NodeSetSimple,
* NodeSetPure and NodeSet
*
* \author Carsten Gutwenger
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_NODE_SET_H
#define OGDF_NODE_SET_H
#include <ogdf/basic/NodeArray.h>
#include <ogdf/basic/List.h>
#include <ogdf/basic/SList.h>
namespace ogdf {
//! Simple node sets.
/**
* A node set maintains a subset \a S of the nodes contained in an associated
* graph. This kind of node set only provides efficient operation for testing
* membership, insertion, and clearing the set.
*
* \sa
* - NodeSet, NodeSetPure
* - FaceSet, FaceSetPure, FaceSetSimple
*/
class OGDF_EXPORT NodeSetSimple {
public:
//! Creates an empty node set associated with graph \a G.
NodeSetSimple(const Graph &G) : m_isContained(G,false) { }
// destructor
~NodeSetSimple() { }
//! Inserts node \a v into \a S.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
void insert(node v) {
OGDF_ASSERT(v->graphOf() == m_isContained.graphOf());
bool &isContained = m_isContained[v];
if (isContained == false) {
isContained = true;
m_nodes.pushFront(v);
}
}
//! Removes all nodes from \a S.
/**
* After this operation, \a S is empty and still associated with the same graph.
* The runtime of this operations is O(k), where k is the number of nodes in \a S
* before this operation.
*/
void clear() {
SListIterator<node> it;
for(it = m_nodes.begin(); it.valid(); ++it) {
m_isContained[*it] = false;
}
m_nodes.clear();
}
//! Returns true if node \a v is contained in \a S, false otherwise.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
bool isMember(node v) const {
OGDF_ASSERT(v->graphOf() == m_isContained.graphOf());
return m_isContained[v];
}
//! Returns a reference to the list of nodes contained in \a S.
/**
* This list can be used for iterating over all nodes in \a S.
*/
const SListPure<node> &nodes() const {
return m_nodes;
}
private:
//! m_isContained[v] is true iff \a v is contained in \a S.
NodeArray<bool> m_isContained;
//! The list of nodes contained in \a S.
SListPure<node> m_nodes;
};
//! Node sets.
/**
* A node set maintains a subset \a S of the nodes contained in an associated
* graph. This kind of node set provides efficient operations for testing
* membership, insertion and deletion of elements, and clearing the set.
*
* In contrast to NodeSet, a NodeSetPure does not provide efficient access
* to the number of nodes stored in the set.
*
* \sa
* - NodeSet, NodeSetSimple
* - FaceSet, FaceSetPure, FaceSetSimple
*/
class OGDF_EXPORT NodeSetPure {
public:
//! Creates an empty node set associated with graph \a G.
NodeSetPure(const Graph &G) : m_it(G,ListIterator<node>()) { }
// destructor
~NodeSetPure() { }
//! Inserts node \a v into \a S.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
void insert(node v) {
OGDF_ASSERT(v->graphOf() == m_it.graphOf());
ListIterator<node> &itV = m_it[v];
if (!itV.valid())
itV = m_nodes.pushBack(v);
}
//! Removes node \a v from \a S.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
void remove(node v) {
OGDF_ASSERT(v->graphOf() == m_it.graphOf());
ListIterator<node> &itV = m_it[v];
if (itV.valid()) {
m_nodes.del(itV);
itV = ListIterator<node>();
}
}
//! Removes all nodes from \a S.
/**
* After this operation, \a S is empty and still associated with the same graph.
* The runtime of this operations is O(k), where k is the number of nodes in \a S
* before this operation.
*/
void clear() {
ListIterator<node> it;
for(it = m_nodes.begin(); it.valid(); ++it) {
m_it[*it] = ListIterator<node>();
}
m_nodes.clear();
}
//! Returns true if node \a v is contained in \a S, false otherwise.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
bool isMember(node v) const {
OGDF_ASSERT(v->graphOf() == m_it.graphOf());
return m_it[v].valid();
}
//! Returns a reference to the list of nodes contained in \a S.
/**
* This list can be used for iterating over all nodes in \a S.
*/
const ListPure<node> &nodes() const {
return m_nodes;
}
//! Copy constructor.
NodeSetPure(const NodeSetPure& V) : m_it(*V.m_it.graphOf(), ListIterator<node>()) {
forall_listiterators(node, it, V.m_nodes) {
insert(*it);
}
}
//! Assignment operator.
NodeSetPure &operator=(const NodeSetPure &V) {
m_nodes.clear();
m_it.init(*V.m_it.graphOf());
forall_listiterators(node, it, V.m_nodes) {
insert(*it);
}
return *this;
}
private:
//! m_it[v] contains the list iterator pointing to \a v if \a v is contained in S,
//! an invalid list iterator otherwise.
NodeArray<ListIterator<node> > m_it;
//! The list of nodes contained in \a S.
ListPure<node> m_nodes;
};
//! Node sets.
/**
* A node set maintains a subset \a S of the nodes contained in an associated
* graph. This kind of node set provides efficient operations for testing
* membership, insertion and deletion of elements, and clearing the set.
*
* In contrast to NodeSetPure, a NodeSet provides efficient access
* to the number of elements stored in the set.
*
* \sa
* - NodeSetPure, NodeSetSimple
* - FaceSet, FaceSetPure, FaceSetSimple
*/
class OGDF_EXPORT NodeSet {
public:
//! Creates an empty node set associated with graph \a G.
NodeSet(const Graph &G) : m_it(G,ListIterator<node>()) { }
// destructor
~NodeSet() { }
//! Inserts node \a v into \a S.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
void insert(node v) {
OGDF_ASSERT(v->graphOf() == m_it.graphOf());
ListIterator<node> &itV = m_it[v];
if (!itV.valid())
itV = m_nodes.pushBack(v);
}
//! Removes node \a v from \a S.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
void remove(node v) {
OGDF_ASSERT(v->graphOf() == m_it.graphOf());
ListIterator<node> &itV = m_it[v];
if (itV.valid()) {
m_nodes.del(itV);
itV = ListIterator<node>();
}
}
//! Removes all nodes from \a S.
/**
* After this operation, \a S is empty and still associated with the same graph.
* The runtime of this operations is O(k), where k is the number of nodes in \a S
* before this operation.
*/
void clear() {
ListIterator<node> it;
for(it = m_nodes.begin(); it.valid(); ++it) {
m_it[*it] = ListIterator<node>();
}
m_nodes.clear();
}
//! Returns true if node \a v is contained in \a S, false otherwise.
/**
* This operation has constant runtime.
*
* \pre \a v is a node in the associated graph.
*/
bool isMember(node v) const {
OGDF_ASSERT(v->graphOf() == m_it.graphOf());
return m_it[v].valid();
}
//! Returns the size of \a S.
/**
* This operation has constant runtime.
*/
int size() const {
return m_nodes.size();
}
//! Returns a reference to the list of nodes contained in \a S.
/**
* This list can be used for iterating over all nodes in \a S.
*/
const List<node> &nodes() const {
return m_nodes;
}
//! Copy constructor.
NodeSet(const NodeSet& V) : m_it(*V.m_it.graphOf(), ListIterator<node>()) {
forall_listiterators(node, it, V.m_nodes) {
insert(*it);
}
}
//! Assignment operator.
NodeSet &operator=(const NodeSet &V) {
m_nodes.clear();
m_it.init(*V.m_it.graphOf());
forall_listiterators(node, it, V.m_nodes) {
insert(*it);
}
return *this;
}
private:
//! m_it[v] contains the list iterator pointing to \a v if \a v is contained in S,
//! an invalid list iterator otherwise.
NodeArray<ListIterator<node> > m_it;
//! The list of nodes contained in \a S.
List<node> m_nodes;
};
} // end namespace ogdf
#endif
|