File: NodeSet.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (372 lines) | stat: -rw-r--r-- 9,234 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*
 * $Revision: 3951 $
 *
 * last checkin:
 *   $Author: gutwenger $
 *   $Date: 2014-03-03 13:57:46 +0100 (Mon, 03 Mar 2014) $
 ***************************************************************/

/** \file
 * \brief Declaration and implementation of class NodeSetSimple,
 *        NodeSetPure and NodeSet
 *
 * \author Carsten Gutwenger
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/


#ifdef _MSC_VER
#pragma once
#endif

#ifndef OGDF_NODE_SET_H
#define OGDF_NODE_SET_H


#include <ogdf/basic/NodeArray.h>
#include <ogdf/basic/List.h>
#include <ogdf/basic/SList.h>



namespace ogdf {


//! Simple node sets.
/**
 * A node set maintains a subset \a S of the nodes contained in an associated
 * graph. This kind of node set only provides efficient operation for testing
 * membership, insertion, and clearing the set.
 *
 * \sa
 *   - NodeSet, NodeSetPure
 *   - FaceSet, FaceSetPure, FaceSetSimple
 */
class OGDF_EXPORT NodeSetSimple {
public:
	//! Creates an empty node set associated with graph \a G.
	NodeSetSimple(const Graph &G) : m_isContained(G,false) { }

	// destructor
	~NodeSetSimple() { }

	//! Inserts node \a v into \a S.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	void insert(node v) {
		OGDF_ASSERT(v->graphOf() == m_isContained.graphOf());
		bool &isContained = m_isContained[v];
		if (isContained == false) {
			isContained = true;
			m_nodes.pushFront(v);
		}
	}

	//! Removes all nodes from \a S.
	/**
	 * After this operation, \a S is empty and still associated with the same graph.
	 * The runtime of this operations is O(k), where k is the number of nodes in \a S
	 * before this operation.
	 */
	void clear() {
		SListIterator<node> it;
		for(it = m_nodes.begin(); it.valid(); ++it) {
			m_isContained[*it] = false;
		}
		m_nodes.clear();
	}

	//! Returns true if node \a v is contained in \a S, false otherwise.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	bool isMember(node v) const {
		OGDF_ASSERT(v->graphOf() == m_isContained.graphOf());
		return m_isContained[v];
	}

	//! Returns a reference to the list of nodes contained in \a S.
	/**
	 * This list can be used for iterating over all nodes in \a S.
	 */
	const SListPure<node> &nodes() const {
		return m_nodes;
	}

private:
	//! m_isContained[v] is true iff \a v is contained in \a S.
	NodeArray<bool> m_isContained;

	//! The list of nodes contained in \a S.
	SListPure<node> m_nodes;
};



//! Node sets.
/**
 * A node set maintains a subset \a S of the nodes contained in an associated
 * graph. This kind of node set provides efficient operations for testing
 * membership, insertion and deletion of elements, and clearing the set.
 *
 * In contrast to NodeSet, a NodeSetPure does not provide efficient access
 * to the number of nodes stored in the set.
 *
 * \sa
 *   - NodeSet, NodeSetSimple
 *   - FaceSet, FaceSetPure, FaceSetSimple
 */
class OGDF_EXPORT NodeSetPure {
public:
	//! Creates an empty node set associated with graph \a G.
	NodeSetPure(const Graph &G) : m_it(G,ListIterator<node>()) { }

	// destructor
	~NodeSetPure() { }

	//! Inserts node \a v into \a S.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	void insert(node v) {
		OGDF_ASSERT(v->graphOf() == m_it.graphOf());
		ListIterator<node> &itV = m_it[v];
		if (!itV.valid())
			itV = m_nodes.pushBack(v);
	}

	//! Removes node \a v from \a S.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	void remove(node v) {
		OGDF_ASSERT(v->graphOf() == m_it.graphOf());
		ListIterator<node> &itV = m_it[v];
		if (itV.valid()) {
			m_nodes.del(itV);
			itV = ListIterator<node>();
		}
	}


	//! Removes all nodes from \a S.
	/**
	 * After this operation, \a S is empty and still associated with the same graph.
	 * The runtime of this operations is O(k), where k is the number of nodes in \a S
	 * before this operation.
	 */
	void clear() {
		ListIterator<node> it;
		for(it = m_nodes.begin(); it.valid(); ++it) {
			m_it[*it] = ListIterator<node>();
		}
		m_nodes.clear();
	}


	//! Returns true if node \a v is contained in \a S, false otherwise.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	bool isMember(node v) const {
		OGDF_ASSERT(v->graphOf() == m_it.graphOf());
		return m_it[v].valid();
	}

	//! Returns a reference to the list of nodes contained in \a S.
	/**
	 * This list can be used for iterating over all nodes in \a S.
	 */
	const ListPure<node> &nodes() const {
		return m_nodes;
	}

	//! Copy constructor.
	NodeSetPure(const NodeSetPure& V) : m_it(*V.m_it.graphOf(), ListIterator<node>()) {
		forall_listiterators(node, it, V.m_nodes) {
			insert(*it);
		}
	}

	//! Assignment operator.
	NodeSetPure &operator=(const NodeSetPure &V) {
		m_nodes.clear();
		m_it.init(*V.m_it.graphOf());
		forall_listiterators(node, it, V.m_nodes) {
			insert(*it);
		}
		return *this;
	}

private:
	//! m_it[v] contains the list iterator pointing to \a v if \a v is contained in S,
	//! an invalid list iterator otherwise.
	NodeArray<ListIterator<node> > m_it;

	//! The list of nodes contained in \a S.
	ListPure<node> m_nodes;
};



//! Node sets.
/**
 * A node set maintains a subset \a S of the nodes contained in an associated
 * graph. This kind of node set provides efficient operations for testing
 * membership, insertion and deletion of elements, and clearing the set.
 *
 * In contrast to NodeSetPure, a NodeSet provides efficient access
 * to the number of elements stored in the set.
 *
 * \sa
 *   - NodeSetPure, NodeSetSimple
 *   - FaceSet, FaceSetPure, FaceSetSimple
 */
class OGDF_EXPORT NodeSet {
public:
	//! Creates an empty node set associated with graph \a G.
	NodeSet(const Graph &G) : m_it(G,ListIterator<node>()) { }

	// destructor
	~NodeSet() { }

	//! Inserts node \a v into \a S.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	void insert(node v) {
		OGDF_ASSERT(v->graphOf() == m_it.graphOf());
		ListIterator<node> &itV = m_it[v];
		if (!itV.valid())
			itV = m_nodes.pushBack(v);
	}

	//! Removes node \a v from \a S.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	void remove(node v) {
		OGDF_ASSERT(v->graphOf() == m_it.graphOf());
		ListIterator<node> &itV = m_it[v];
		if (itV.valid()) {
			m_nodes.del(itV);
			itV = ListIterator<node>();
		}
	}


	//! Removes all nodes from \a S.
	/**
	 * After this operation, \a S is empty and still associated with the same graph.
	 * The runtime of this operations is O(k), where k is the number of nodes in \a S
	 * before this operation.
	 */
	void clear() {
		ListIterator<node> it;
		for(it = m_nodes.begin(); it.valid(); ++it) {
			m_it[*it] = ListIterator<node>();
		}
		m_nodes.clear();
	}


	//! Returns true if node \a v is contained in \a S, false otherwise.
	/**
	 * This operation has constant runtime.
	 *
	 * \pre \a v is a node in the associated graph.
	 */
	bool isMember(node v) const {
		OGDF_ASSERT(v->graphOf() == m_it.graphOf());
		return m_it[v].valid();
	}

	//! Returns the size of \a S.
	/**
	 * This operation has constant runtime.
	 */
	int size() const {
		return m_nodes.size();
	}

	//! Returns a reference to the list of nodes contained in \a S.
	/**
	 * This list can be used for iterating over all nodes in \a S.
	 */
	const List<node> &nodes() const {
		return m_nodes;
	}

	//! Copy constructor.
	NodeSet(const NodeSet& V) : m_it(*V.m_it.graphOf(), ListIterator<node>()) {
		forall_listiterators(node, it, V.m_nodes) {
			insert(*it);
		}
	}

	//! Assignment operator.
	NodeSet &operator=(const NodeSet &V) {
		m_nodes.clear();
		m_it.init(*V.m_it.graphOf());
		forall_listiterators(node, it, V.m_nodes) {
			insert(*it);
		}
		return *this;
	}

private:
	//! m_it[v] contains the list iterator pointing to \a v if \a v is contained in S,
	//! an invalid list iterator otherwise.
	NodeArray<ListIterator<node> > m_it;

	//! The list of nodes contained in \a S.
	List<node> m_nodes;
};


} // end namespace ogdf


#endif