1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*
* $Revision: 3341 $
*
* last checkin:
* $Author: klein $
* $Date: 2013-03-09 03:07:12 +0100 (Sat, 09 Mar 2013) $
***************************************************************/
/** \file
* \brief Declaration of Clusterer class that computes a clustering
* for a given graph based on the local neighborhood
* structure of each edge. Uses the criteria by
* Auber, Chiricota, Melancon for small-world graphs to
* compute clustering index and edge strength.
*
* \author Karsten Klein
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_CLUSTERER_H
#define OGDF_CLUSTERER_H
#include <ogdf/module/ClustererModule.h>
namespace ogdf {
/**
* Clustering is determined based on the threshold values (connectivity
* thresholds determine edges to be deleted) and stopped if average
* clustering index drops below m_stopIndex.
*
* \pre Input graph has to be connected
*/
class OGDF_EXPORT Clusterer : public ClustererModule
{
public:
//! Constructor taking a graph G to be clustered
Clusterer(const Graph &G);
/**Default constructor allowing to cluster multiple
*graphs with the same instance of the Clusterer
*graphs */
Clusterer();
virtual ~Clusterer() {}
//The clustering can be done recursively (use single threshold
//on component to delete weak edges (recompute strengths)) or
//by applying a set of thresholds, set the behaviour in
//function setRecursive
virtual void computeClustering(SList<SimpleCluster*> &sl);
//set the thresholds defining the hierarchy assignment decision
//should be dependent on the used metrics
void setClusteringThresholds(const List<double> &threshs);
//thresholds are computed from edge strengths to split off
//at least some edges as long as there is a difference between
//min and max strength (progressive clustering)
//set this value to 0 to use your own or the default values
void setAutomaticThresholds(int numValues)
{m_autoThreshNum = numValues;}
//for recursive clustering, only the first threshold is used
void setRecursive(bool b) {m_recursive = b;}
//preliminary
void computeEdgeStrengths(EdgeArray<double> & strength);
void computeEdgeStrengths(const Graph &G, EdgeArray<double> & strength);
void createClusterGraph(ClusterGraph &C);
void setStopIndex(double stop) {m_stopIndex = stop;}
//compute a clustering index for node v
//number of connections in neighborhood compared to clique
virtual double computeCIndex(node v)
{
return computeCIndex(*m_pGraph, v);
}
virtual double computeCIndex(const Graph &G, node v)
{
OGDF_ASSERT(v->graphOf() == &G);
if (v->degree()<2) return 1.0;
int conns = 0; //connections, without v
NodeArray<bool> neighbor(G, false);
adjEntry adjE;
forall_adj(adjE, v)
{
neighbor[adjE->twinNode()] = true;
}
forall_adj(adjE, v)
{
adjEntry adjEE;
forall_adj(adjEE, adjE->twinNode())
{
if (neighbor[adjEE->twinNode()])
conns++;
}
}
//connections were counted twice
double index = conns / 2.0;
return index / (v->degree()*(v->degree()-1));
}
protected:
EdgeArray<double> m_edgeValue; //strength value for edge clustering index
NodeArray<double> m_vertexValue; //clustering index for vertices
List<double> m_thresholds; //clustering level thresholds
List<double> m_autoThresholds; //automatically generated values (dep. on graph instance)
List<double> m_defaultThresholds; //some default values
double m_stopIndex; //average clustering index when recursive clustering stops
//between 0 and 1
bool m_recursive; //recursive clustering or list of tresholds
//bool m_autoThresholds; //compute thresholds according to edge strengths
int m_autoThreshNum; //number of thresholds to be computed
};//class Clusterer
} //end namespace ogdf
#endif
|