File: Clusterer.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (149 lines) | stat: -rw-r--r-- 4,928 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 * $Revision: 3341 $
 *
 * last checkin:
 *   $Author: klein $
 *   $Date: 2013-03-09 03:07:12 +0100 (Sat, 09 Mar 2013) $
 ***************************************************************/

/** \file
 * \brief Declaration of Clusterer class that computes a clustering
 *        for a given graph based on the local neighborhood
 *        structure of each edge. Uses the criteria by
 *        Auber, Chiricota, Melancon for small-world graphs to
 *        compute clustering index and edge strength.
 *
 * \author Karsten Klein
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/


#ifdef _MSC_VER
#pragma once
#endif

#ifndef OGDF_CLUSTERER_H
#define OGDF_CLUSTERER_H

#include <ogdf/module/ClustererModule.h>

namespace ogdf {


	/**
	 * Clustering is determined based on the threshold values (connectivity
	 * thresholds determine edges to be deleted) and stopped if average
	 * clustering index drops below m_stopIndex.
	 *
	 * \pre Input graph has to be connected
	 */
	class OGDF_EXPORT Clusterer : public ClustererModule
	{
		public:
		//! Constructor taking a graph G to be clustered
		Clusterer(const Graph &G);
		/**Default constructor allowing to cluster multiple
		*graphs with the same instance of the Clusterer
		*graphs */
		Clusterer();
		virtual ~Clusterer() {}

		//The clustering can be done recursively (use single threshold
		//on component to delete weak edges (recompute strengths)) or
		//by applying a set of thresholds, set the behaviour in
		//function setRecursive
		virtual void computeClustering(SList<SimpleCluster*> &sl);
		//set the thresholds defining the hierarchy assignment decision
		//should be dependent on the used metrics
		void setClusteringThresholds(const List<double> &threshs);
		//thresholds are computed from edge strengths to split off
		//at least some edges as long as there is a difference between
		//min and max strength (progressive clustering)
		//set this value to 0 to use your own or the default values
		void setAutomaticThresholds(int numValues)
		{m_autoThreshNum = numValues;}
		//for recursive clustering, only the first threshold is used
		void setRecursive(bool b) {m_recursive = b;}
		//preliminary
		void computeEdgeStrengths(EdgeArray<double> & strength);
		void computeEdgeStrengths(const Graph &G, EdgeArray<double> & strength);

		void createClusterGraph(ClusterGraph &C);

		void setStopIndex(double stop) {m_stopIndex = stop;}

		//compute a clustering index for node v
		//number of connections in neighborhood compared to clique
		virtual double computeCIndex(node v)
		{
			return computeCIndex(*m_pGraph, v);
		}
		virtual double computeCIndex(const Graph &G, node v)
		{
			OGDF_ASSERT(v->graphOf() == &G);
			if (v->degree()<2) return 1.0;
			int conns = 0; //connections, without v
			NodeArray<bool> neighbor(G, false);
			adjEntry adjE;
			forall_adj(adjE, v)
			{
				neighbor[adjE->twinNode()] = true;
			}
			forall_adj(adjE, v)
			{
				adjEntry adjEE;
				forall_adj(adjEE, adjE->twinNode())
				{
					if (neighbor[adjEE->twinNode()])
						conns++;
				}
			}
			//connections were counted twice
			double index = conns / 2.0;
			return index / (v->degree()*(v->degree()-1));
		}

		protected:
		EdgeArray<double> m_edgeValue; //strength value for edge clustering index
		NodeArray<double> m_vertexValue; //clustering index for vertices
		List<double> m_thresholds; //clustering level thresholds
		List<double> m_autoThresholds; //automatically generated values (dep. on graph instance)
		List<double> m_defaultThresholds; //some default values
		double m_stopIndex; //average clustering index when recursive clustering stops
							//between 0 and 1
		bool m_recursive; //recursive clustering or list of tresholds
		//bool m_autoThresholds; //compute thresholds according to edge strengths
		int m_autoThreshNum; //number of thresholds to be computed

	};//class Clusterer

} //end namespace ogdf

#endif