File: IntersectionRectangle.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (209 lines) | stat: -rw-r--r-- 6,082 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
 * $Revision: 2564 $
 *
 * last checkin:
 *   $Author: gutwenger $
 *   $Date: 2012-07-07 00:03:48 +0200 (Sat, 07 Jul 2012) $
 ***************************************************************/

/** \file
 * \brief Declaration of class IntersectionRectangle which realizes axis
 *        parallel rectangles.
 *
 * The class can compute the rectangle that
 * is created by the intersection of two rectangles and it can
 * compute the area of a rectangle.
 *
 * \author Rene Weiskircher
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/



#ifdef _MSC_VER
#pragma once
#endif

#ifndef OGDF_INTERSECTION_RECTANGLE_H
#define OGDF_INTERSECTION_RECTANGLE_H


#include <ogdf/basic/geometry.h>
#include <math.h>


namespace ogdf {


class OGDF_EXPORT IntersectionRectangle {

private:

	DPoint m_p1; // lower left Point
	DPoint m_p2; // upper right Point
	double m_area;
	DPoint m_center;

public:

	// constructs zero area rectangle
	IntersectionRectangle() : m_p1(), m_p2(), m_area(0.0), m_center() { }

	//constructs rectangle with diagonal from p1 to p2
	IntersectionRectangle(const DPoint &p1, const DPoint &p2) : m_p1(p1), m_p2(p2) { init(); }

	//copy constructor
	IntersectionRectangle(const IntersectionRectangle &dr) :
		m_p1(dr.m_p1), m_p2(dr.m_p2), m_area(dr.m_area), m_center(dr.m_center) { }

	//constructs rectangle with diagonal from (x1,y1) to (x2,y2)
	IntersectionRectangle(double x1, double y1, double x2, double y2) {
		m_p1.m_x = x1; m_p1.m_y = y1; m_p2.m_x = x2; m_p2.m_y = y2;
		init();
	}

	//constructs rectangle with diagonal dl
	IntersectionRectangle(const DLine &dl) : m_p1(dl.start()), m_p2(dl.end())
	{ init(); }

	// constructs a rectangle from the center point, width and height
	IntersectionRectangle(const DPoint &, double , double);

	// returns true if two rectangles have the same coordinates
	bool operator==(const IntersectionRectangle &dr) const {
		return m_p1 == dr.m_p1 && m_p2 == dr.m_p2;
	}

	// returns true if two rectangles have different coordinates
	bool operator!=(const IntersectionRectangle &dr) const {
		return !(*this == dr);
	}

	// assignment
	IntersectionRectangle &operator= (const IntersectionRectangle &dr) {
		if (this != &dr) { // don't assign myself
			m_p1 = dr.m_p1;
			m_p2 = dr.m_p2;
			m_center = dr.m_center;
			m_area = dr.m_area;
		}
		return *this;
	}

	// returns the width of the rectangle
	double width() const {
		return m_p2.m_x - m_p1.m_x;
	}

	//returns the height of the rectangle
	double height() const {
		return m_p2.m_y - m_p1.m_y;
	}

	//returns the center of the rectangle
	DPoint center() const { return m_center; }

	//returns the area of the rectangle
	double area() const { return m_area; }


	// returns rect-defining vertices
	const DPoint &p1() const { return m_p1; }
	const DPoint &p2() const { return m_p2; }

	// tests if p is inside the rectangle modulo the comparison epsilon
	bool inside(const DPoint &p) const {
		if ((p.m_x + OGDF_GEOM_EPS) < m_p1.m_x ||
			(p.m_x - OGDF_GEOM_EPS) > m_p2.m_x ||
			(p.m_y + OGDF_GEOM_EPS) < m_p1.m_y ||
			(p.m_y - OGDF_GEOM_EPS) > m_p2.m_y)
			return false;
		return true;
	}

	// tests if *this and the argument rectangle intersect
	bool intersects(const IntersectionRectangle &) const;

	// returns the rectangle resulting from intersection of this and argument.
	// Returns a rectangle with zero width and height and center (0,0) if intersection
	// is empty.
	IntersectionRectangle intersection(const IntersectionRectangle &) const;

	// computes distance between two rectangles
	double distance(const IntersectionRectangle &) const;

	//moves the rectangle such that its center is at the given point
	void move(const DPoint &);

private:
	// makes sure, that m_p1 <= m_p2, default after construction, sets area and center
	void init();

	// swaps the two y-coordinates
	void yInvert() { swap(m_p1.m_y, m_p2.m_y); }

	// swaps the two x-coordinates
	void xInvert() { swap(m_p1.m_x, m_p2.m_x); }

	// functions for computing bounding lines
	DLine bottom() const { return DLine(m_p1.m_x,m_p1.m_y,m_p2.m_x,m_p1.m_y); }
	DLine top() const { return DLine(m_p1.m_x, m_p2.m_y, m_p2.m_x,m_p2.m_y); }
	DLine left() const { return DLine(m_p1.m_x, m_p1.m_y, m_p1.m_x, m_p2.m_y); }
	DLine right() const { return DLine(m_p2.m_x, m_p1.m_y, m_p2.m_x, m_p2.m_y); }

	// computes distance between parallel line segments
	double parallelDist(const DLine &, const DLine &) const;

	// computes distance between two points
	double pointDist(const DPoint &p1, const DPoint &p2) const {
		return sqrt((p1.m_y - p2.m_y) * (p1.m_y - p2.m_y) + (p1.m_x - p2.m_x) * (p1.m_x - p2.m_x));
	}

	friend ostream& operator<<(ostream &,const IntersectionRectangle &);
};

/*
//the point comparer is needed for sorting points and storing them in
//sorted sequences
class PointComparer {
public:
	static int compare(const DPoint &p1, const DPoint &p2) {
		if(p1.m_x > p2.m_x) return 1;
		if(p1.m_x < p2.m_x) return -1;
		if(p1.m_y > p2.m_y) return 1;
		if(p1.m_y < p2.m_y) return -1;
		return 0;
	}
	OGDF_AUGMENT_STATICCOMPARER(DPoint)
};
*/

}
#endif