1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*
* $Revision: 2523 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-02 20:59:27 +0200 (Mon, 02 Jul 2012) $
***************************************************************/
/** \file
* \brief Declaration of base class of min-cost-flow algorithms
*
* Includes some useful functions dealing with min-cost flow
* (generater, checker).
*
* \author Carsten Gutwenger
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_MIN_COST_FLOW_MODULE_H
#define OGDF_MIN_COST_FLOW_MODULE_H
#include <ogdf/basic/Graph.h>
namespace ogdf {
/**
* \brief Interface for min-cost flow algorithms.
*/
class OGDF_EXPORT MinCostFlowModule
{
public:
//! Initializes a min-cost flow module.
MinCostFlowModule() { }
// destruction
virtual ~MinCostFlowModule() { }
/**
* \brief Computes a min-cost flow in the directed graph \a G.
*
* \pre \a G must be connected, \a lowerBound[\a e] \f$\leq\f$ \a upperBound[\a e]
* for all edges \a e, and the sum over all supplies must be zero.
*
* @param G is the directed input graph.
* @param lowerBound gives the lower bound for the flow on each edge.
* @param upperBound gives the upper bound for the flow on each edge.
* @param cost gives the costs for each edge.
* @param supply gives the supply (or demand if negative) of each node.
* @param flow is assigned the computed flow on each edge.
* @param dual is assigned the computed dual variables.
* \return true iff a feasible min-cost flow exists.
*/
virtual bool call(
const Graph &G, // directed graph
const EdgeArray<int> &lowerBound, // lower bound for flow
const EdgeArray<int> &upperBound, // upper bound for flow
const EdgeArray<int> &cost, // cost of an edge
const NodeArray<int> &supply, // supply (if neg. demand) of a node
EdgeArray<int> &flow, // computed flow
NodeArray<int> &dual // computed dual variables
) = 0;
//
// static functions
//
/**
* \brief Generates an instance of a min-cost flow problem with \a n nodes and
* \a m+\a n edges.
*/
static void generateProblem(
Graph &G,
int n,
int m,
EdgeArray<int> &lowerBound,
EdgeArray<int> &upperBound,
EdgeArray<int> &cost,
NodeArray<int> &supply);
/**
* \brief Checks if a given min-cost flow problem instance satisfies
* the preconditions.
* The following preconditions are checked:
* - \a lowerBound[\a e] \f$\leq\f$ \a upperBound[\a e] for all edges \a e
* - sum over all \a supply[\a v] = 0
*
* @param G is the input graph.
* @param lowerBound gives the lower bound for the flow on each edge.
* @param upperBound gives the upper bound for the flow on each edge.
* @param supply gives the supply (or demand if negative) of each node.
* \return true iff the problem satisfies the preconditions.
*/
static bool checkProblem(
const Graph &G,
const EdgeArray<int> &lowerBound,
const EdgeArray<int> &upperBound,
const NodeArray<int> &supply);
/**
* \brief checks if a computed flow is a feasible solution to the given problem
* instance.
*
* Checks in particular if:
* - \a lowerBound[\a e] \f$\leq\f$ \a flow[\a e] \f$\leq\f$ \a upperBound[\a e]
* - sum \a flow[\a e], \a e is outgoing edge of \a v minus
* sum \a flow[\a e], \a e is incoming edge of \a v equals \a supply[\a v]
* for each node \a v
*
* @param G is the input graph.
* @param lowerBound gives the lower bound for the flow on each edge.
* @param upperBound gives the upper bound for the flow on each edge.
* @param cost gives the costs for each edge.
* @param supply gives the supply (or demand if negative) of each node.
* @param flow is the flow on each edge.
* @param value is assigned the value of the flow.
* \return true iff the solution is feasible.
*/
static bool checkComputedFlow(
const Graph &G,
EdgeArray<int> &lowerBound,
EdgeArray<int> &upperBound,
EdgeArray<int> &cost,
NodeArray<int> &supply,
EdgeArray<int> &flow,
int &value);
/**
* \brief checks if a computed flow is a feasible solution to the given problem
* instance.
*
* Checks in particular if:
* - \a lowerBound[\a e] \f$\leq\f$ \a flow[\a e] \f$\leq\f$ \a upperBound[\a e]
* - sum \a flow[\a e], \a e is outgoing edge of \a v minus
* sum \a flow[\a e], \a e is incoming edge of \a v equals \a supply[\a v]
* for each node \a v
*
* @param G is the input graph.
* @param lowerBound gives the lower bound for the flow on each edge.
* @param upperBound gives the upper bound for the flow on each edge.
* @param cost gives the costs for each edge.
* @param supply gives the supply (or demand if negative) of each node.
* @param flow is the flow on each edge.
* \return true iff the solution is feasible.
*/
static bool checkComputedFlow(
const Graph &G,
EdgeArray<int> &lowerBound,
EdgeArray<int> &upperBound,
EdgeArray<int> &cost,
NodeArray<int> &supply,
EdgeArray<int> &flow)
{
int value;
return checkComputedFlow(
G,lowerBound,upperBound,cost,supply,flow,value);
}
};
} // end namespace ogdf
#endif
|