File: MinCostFlowModule.h

package info (click to toggle)
tulip 4.8.0dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 179,264 kB
  • ctags: 64,517
  • sloc: cpp: 600,444; ansic: 36,311; makefile: 22,136; python: 1,304; sh: 946; yacc: 522; xml: 337; pascal: 157; php: 66; lex: 55
file content (202 lines) | stat: -rw-r--r-- 6,220 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
 * $Revision: 2523 $
 *
 * last checkin:
 *   $Author: gutwenger $
 *   $Date: 2012-07-02 20:59:27 +0200 (Mon, 02 Jul 2012) $
 ***************************************************************/

/** \file
 * \brief Declaration of base class of min-cost-flow algorithms
 *
 * Includes some useful functions dealing with min-cost flow
 * (generater, checker).
 *
 * \author Carsten Gutwenger
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/


#ifdef _MSC_VER
#pragma once
#endif

#ifndef OGDF_MIN_COST_FLOW_MODULE_H
#define OGDF_MIN_COST_FLOW_MODULE_H


#include <ogdf/basic/Graph.h>


namespace ogdf {


/**
 * \brief Interface for min-cost flow algorithms.
 */
class OGDF_EXPORT MinCostFlowModule
{
public:
	//! Initializes a min-cost flow module.
	MinCostFlowModule() { }

	// destruction
	virtual ~MinCostFlowModule() { }

	/**
	 * \brief Computes a min-cost flow in the directed graph \a G.
	 *
	 * \pre \a G must be connected, \a lowerBound[\a e] \f$\leq\f$ \a upperBound[\a e]
	 *      for all edges \a e, and the sum over all supplies must be zero.
	 *
	 * @param G is the directed input graph.
	 * @param lowerBound gives the lower bound for the flow on each edge.
	 * @param upperBound gives the upper bound for the flow on each edge.
	 * @param cost gives the costs for each edge.
	 * @param supply gives the supply (or demand if negative) of each node.
	 * @param flow is assigned the computed flow on each edge.
	 * @param dual is assigned the computed dual variables.
	 * \return true iff a feasible min-cost flow exists.
	 */
	virtual bool call(
		const Graph &G,                   // directed graph
		const EdgeArray<int> &lowerBound, // lower bound for flow
		const EdgeArray<int> &upperBound, // upper bound for flow
		const EdgeArray<int> &cost,       // cost of an edge
		const NodeArray<int> &supply,     // supply (if neg. demand) of a node
		EdgeArray<int> &flow,			  // computed flow
		NodeArray<int> &dual            // computed dual variables
		) = 0;


	//
	// static functions
	//

	/**
	 * \brief Generates an instance of a min-cost flow problem with \a n nodes and
	 *        \a m+\a n edges.
	 */
	static void generateProblem(
		Graph &G,
		int n,
		int m,
		EdgeArray<int> &lowerBound,
		EdgeArray<int> &upperBound,
		EdgeArray<int> &cost,
		NodeArray<int> &supply);


	/**
	 * \brief Checks if a given min-cost flow problem instance satisfies
	 *        the preconditions.
	 * The following preconditions are checked:
	 *   - \a lowerBound[\a e] \f$\leq\f$ \a upperBound[\a e] for all edges \a e
	 *   - sum over all \a supply[\a v] = 0
	 *
	 * @param G is the input graph.
	 * @param lowerBound gives the lower bound for the flow on each edge.
	 * @param upperBound gives the upper bound for the flow on each edge.
	 * @param supply gives the supply (or demand if negative) of each node.
	 * \return true iff the problem satisfies the preconditions.
	 */
	static bool checkProblem(
		const Graph &G,
		const EdgeArray<int> &lowerBound,
		const EdgeArray<int> &upperBound,
		const NodeArray<int> &supply);



	/**
	 * \brief checks if a computed flow is a feasible solution to the given problem
	 *        instance.
	 *
	 * Checks in particular if:
	 *   - \a lowerBound[\a e] \f$\leq\f$ \a flow[\a e] \f$\leq\f$ \a upperBound[\a e]
	 *   - sum \a flow[\a e], \a e is outgoing edge of \a v minus
	 *     sum \a flow[\a e], \a e is incoming edge of \a v equals \a supply[\a v]
	 *     for each node \a v
	 *
	 * @param G is the input graph.
	 * @param lowerBound gives the lower bound for the flow on each edge.
	 * @param upperBound gives the upper bound for the flow on each edge.
	 * @param cost gives the costs for each edge.
	 * @param supply gives the supply (or demand if negative) of each node.
	 * @param flow is the flow on each edge.
	 * @param value is assigned the value of the flow.
	 * \return true iff the solution is feasible.
	 */
	static bool checkComputedFlow(
		const Graph &G,
		EdgeArray<int> &lowerBound,
		EdgeArray<int> &upperBound,
		EdgeArray<int> &cost,
		NodeArray<int> &supply,
		EdgeArray<int> &flow,
		int &value);

	/**
	 * \brief checks if a computed flow is a feasible solution to the given problem
	 *        instance.
	 *
	 * Checks in particular if:
	 *   - \a lowerBound[\a e] \f$\leq\f$ \a flow[\a e] \f$\leq\f$ \a upperBound[\a e]
	 *   - sum \a flow[\a e], \a e is outgoing edge of \a v minus
	 *     sum \a flow[\a e], \a e is incoming edge of \a v equals \a supply[\a v]
	 *     for each node \a v
	 *
	 * @param G is the input graph.
	 * @param lowerBound gives the lower bound for the flow on each edge.
	 * @param upperBound gives the upper bound for the flow on each edge.
	 * @param cost gives the costs for each edge.
	 * @param supply gives the supply (or demand if negative) of each node.
	 * @param flow is the flow on each edge.
	 * \return true iff the solution is feasible.
	 */
	static bool checkComputedFlow(
		const Graph &G,
		EdgeArray<int> &lowerBound,
		EdgeArray<int> &upperBound,
		EdgeArray<int> &cost,
		NodeArray<int> &supply,
		EdgeArray<int> &flow)
	{
		int value;
		return checkComputedFlow(
			G,lowerBound,upperBound,cost,supply,flow,value);
	}
};


} // end namespace ogdf


#endif