1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/**
*
* This file is part of Tulip (https://tulip.labri.fr)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <ctime>
#include <tulip/TulipPluginHeaders.h>
using namespace std;
using namespace tlp;
static const char *paramHelp[] = {
// min size
"Minimum number of nodes in the tree.",
// max size
"Maximum number of nodes in the tree.",
// tree layout
"If true, the generated tree is drawn with the 'Tree Leaf' layout algorithm."};
/** \addtogroup import */
/// Random Tree - Import of a random uniform binary tree
/** This plugin enables to create a random tree
*
* User can specify the minimal/maximal numbers of nodes used to build of the tree.
*/
class RandomTree : public ImportModule {
bool buildNode(node n, unsigned int sizeM) {
if (graph->numberOfNodes() >= sizeM - 1)
return false;
bool result = true;
int randNumber = randomInteger(RAND_MAX);
if (randNumber > RAND_MAX / 2) {
node n1, n2;
n1 = graph->addNode();
graph->addEdge(n, n1);
result = buildNode(n1, sizeM);
if (result) {
n2 = graph->addNode();
graph->addEdge(n, n2);
result = buildNode(n2, sizeM);
}
}
return result;
}
public:
PLUGININFORMATION("Uniform Random Binary Tree", "Auber", "16/02/2001",
"Imports a new randomly generated uniform binary tree.", "1.2", "Graph")
RandomTree(tlp::PluginContext *context) : ImportModule(context) {
addInParameter<unsigned int>("min size", paramHelp[0], "50");
addInParameter<unsigned int>("max size", paramHelp[1], "60");
addInParameter<bool>("tree layout", paramHelp[2], "false");
addDependency("Tree Leaf", "1.1");
}
bool importGraph() override {
// initialize a random sequence according the given seed
tlp::initRandomSequence();
unsigned int minSize = 100;
unsigned int maxSize = 1000;
bool needLayout = false;
if (dataSet != nullptr) {
dataSet->get("min size", minSize);
dataSet->get("max size", maxSize);
dataSet->get("tree layout", needLayout);
}
if (maxSize < 1) {
if (pluginProgress)
pluginProgress->setError("Error: \"max size\" must be a strictly positive integer");
return false;
}
if (maxSize < minSize) {
if (pluginProgress)
pluginProgress->setError("Error: \"max size\" must be greater than \"min size\"");
return false;
}
bool ok = true;
int i = 0;
while (ok) {
if (pluginProgress->progress(i % 100, 100) != TLP_CONTINUE)
break;
++i;
graph->clear();
node n = graph->addNode();
ok = !buildNode(n, maxSize);
if (graph->numberOfNodes() < minSize)
ok = true;
}
if (pluginProgress->progress(100, 100) == TLP_CANCEL)
return false;
if (needLayout) {
// apply Tree Leaf
string errMsg;
LayoutProperty *layout = graph->getProperty<LayoutProperty>("viewLayout");
return graph->applyPropertyAlgorithm("Tree Leaf", layout, errMsg, nullptr, pluginProgress);
}
return true;
}
};
PLUGIN(RandomTree)
|