File: PathAlgorithm.cpp

package info (click to toggle)
tulip 6.0.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 196,224 kB
  • sloc: cpp: 571,851; ansic: 13,983; python: 4,105; sh: 1,555; yacc: 522; xml: 484; makefile: 168; pascal: 148; lex: 55
file content (281 lines) | stat: -rw-r--r-- 8,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/**
 *
 * This file is part of Tulip (https://tulip.labri.fr)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */

#include <queue>

#include "PathAlgorithm.h"

#include <tulip/BooleanProperty.h>
#include <tulip/DoubleProperty.h>
#include <tulip/MutableContainer.h>
#include <tulip/Graph.h>
#include <tulip/GraphParallelTools.h>
#include <tulip/GraphTools.h>

#include "DFS/DFS.h"

#define SMALLEST_WEIGHT 1.E-6

using namespace tlp;
using namespace std;

static double computePathLength(BooleanProperty *result, EdgeStaticProperty<double> &weights) {
  double retVal(0);
  Graph *graph(result->getGraph());
  auto ite = result->getNonDefaultValuatedEdges(graph);
  while (ite->hasNext()) {
    retVal += weights.getEdgeValue(ite->next());
  }
  delete ite;
  return retVal;
}

// The basic idea is to try to first eliminate all nodes
// which cannot belong to path between src and tgt, that is those
// which belong to "dead end" paths.
static Graph *computeAllPathsGraph(Graph *graph, node src, node tgt,
                                   PathAlgorithm::EdgeOrientation edgesOrientation) {
  Graph *sg;

  // first step to extract the connected component owning src and tgt
  {
    NodeStaticProperty<bool> visited(graph, false);
    std::queue<node> nodesQueue;
    visited[src] = true;
    nodesQueue.push(src);
    unsigned int nbVisited = 1;

    // BFS loop from src
    // to extract the connected component owning src
    while (!nodesQueue.empty()) {
      node n = nodesQueue.front();
      nodesQueue.pop();
      // loop on all neighbours
      for (auto nn : graph->getInOutNodes(n)) {
        unsigned int nnPos = graph->nodePos(nn);
        // check if neighbour has been visited
        if (!visited[nnPos]) {
          // mark neighbour as already visited
          visited[nnPos] = true;
          // add in queue for further deeper exploration
          nodesQueue.push(nn);
          ++nbVisited;
        }
      }
    }

    // check if tgt is in the same connected component
    if (!visited[tgt])
      return nullptr;

    // now delete non visited nodes from a clone
    sg = graph->addCloneSubGraph();

    if (nbVisited < graph->numberOfNodes()) {
      TLP_MAP_NODES_AND_INDICES(graph, [&](node n, unsigned int i) {
        if (!visited[i])
          sg->delNode(n);
      });
    }
  }

  // second step, remove all leaf nodes different from src and tgt
  {
    std::vector<node> v = sg->nodes();
    for (node n : v) {
      while ((sg->deg(n) == 1) && (n != src) && (n != tgt)) {
        // get current node's neighbour
        auto it = sg->getInOutNodes(n);
        node nn = it->next();
        delete it;
        // delete current node
        sg->delNode(n);
        // go further in the "dead end" path with neighbour
        n = nn;
      }
    }
  }

  // special step when Directed or Reversed
  if (edgesOrientation != PathAlgorithm::Undirected) {
    if (edgesOrientation == PathAlgorithm::Reversed) {
      // switch src and tgt
      // to consider only the Directed case
      node n(src);
      src = tgt;
      tgt = n;
      edgesOrientation = PathAlgorithm::Directed;
    }
    // check if there is a possible path
    if (sg->outdeg(src) == 0 || sg->indeg(tgt) == 0)
      return (graph->delSubGraph(sg), nullptr);

    // we recursively delete all nodes belonging to a "dead end" path
    std::vector<node> v = sg->nodes();
    for (node n : v) {
      if (!sg->isElement(n))
        continue;
      // a node belongs to a "dead end" path
      // if it is a "sink" node and is different from tgt,
      if (sg->outdeg(n) == 0 && n != tgt) {
        if (n == src)
          // no possible path
          return (graph->delSubGraph(sg), nullptr);
        // n is the end of a "dead end" path
        std::queue<node> deadEndPath;
        deadEndPath.push(n);
        while (!deadEndPath.empty()) {
          n = deadEndPath.front();
          deadEndPath.pop();
          // enqueue current node's in-neighbours
          // of which it is the only out-neighbour
          Iterator<node> *itn = sg->getInNodes(n);
          while (itn->hasNext()) {
            node nn = itn->next();
            if (nn != tgt && sg->outdeg(nn) == 1) {
              if (nn == src) {
                delete itn;
                // no possible path
                return (graph->delSubGraph(sg), nullptr);
              }
              deadEndPath.push(nn);
            }
          }
          delete itn;
          // n can now be safely deleted
          sg->delNode(n);
        }
        continue;
      }
      // a node belongs also to a "dead end" path
      // if it is a "source" node and is different from src,
      if (sg->indeg(n) == 0 && n != src) {
        if (n == tgt)
          // no possible path
          return (graph->delSubGraph(sg), nullptr);
        // n is the beginning of a dead end path
        std::queue<node> deadEndPath;
        deadEndPath.push(n);
        while (!deadEndPath.empty()) {
          n = deadEndPath.front();
          deadEndPath.pop();
          // enqueue current node's out-neighbours
          // of which it is the only in-neighbour
          Iterator<node> *itn = sg->getOutNodes(n);
          while (itn->hasNext()) {
            node nn = itn->next();
            if (nn != src && sg->indeg(nn) == 1) {
              if (nn == tgt) {
                delete itn;
                // no possible path
                return (graph->delSubGraph(sg), nullptr);
              }
              deadEndPath.push(nn);
            }
          }
          delete itn;
          // n can now be safely deleted
          sg->delNode(n);
        }
      }
    }
  }
  return sg;
}

bool PathAlgorithm::computePath(Graph *graph, PathType pathType, EdgeOrientation edgesOrientation,
                                node src, node tgt, BooleanProperty *result,
                                DoubleProperty *weights, double tolerance) {
#ifndef NDEBUG
  assert(graph);
  assert(result);

  if (weights)
    assert(result->getGraph() == weights->getGraph());

  assert(graph->isElement(src));
  assert(graph->isElement(tgt));
  assert(src != tgt);
#endif /* NDEBUG */

  bool retVal = false;
  tlp::ShortestPathType spt;

  if (pathType == AllShortest) {
    switch (edgesOrientation) {
    case Directed:
      spt = ShortestPathType::AllDirectedPaths;
      break;
    case Undirected:
      spt = ShortestPathType::AllPaths;
      break;
    case Reversed:
    default:
      spt = ShortestPathType::AllReversedPaths;
    }
  } else {
    switch (edgesOrientation) {
    case Directed:
      spt = ShortestPathType::OneDirectedPath;
      break;
    case Undirected:
      spt = ShortestPathType::OnePath;
      break;
    case Reversed:
    default:
      spt = ShortestPathType::OneReversedPath;
    }
  }
  // allow undo
  graph->push();
  retVal = ((pathType == AllPaths) && (tolerance == DBL_MAX)) ||
           selectShortestPaths(graph, src, tgt, spt, weights, result);
  // We only compute the other paths if the tolerance is greater than 1.
  // Meaning that the user doesn't want only the shortest path.
  if (pathType == AllPaths && retVal && tolerance > 1) {
    // eliminates nodes belonging to "dead end" paths
    Graph *sg = computeAllPathsGraph(graph, src, tgt, edgesOrientation);
    if (sg == nullptr)
      retVal = false;
    else {
      EdgeStaticProperty<double> eWeights(sg, SMALLEST_WEIGHT);
      if (tolerance != DBL_MAX) {
        if (weights) {
          auto fn = [&](edge e, unsigned int i) {
            double val(weights->getEdgeValue(e));
            if (val)
              eWeights[i] = val;
          };
          TLP_PARALLEL_MAP_EDGES_AND_INDICES(graph, fn);
        }
        tolerance *= computePathLength(result, eWeights);
        result->setAllNodeValue(false);
        result->setAllEdgeValue(false);
      }
      // finally do a DFS
      DFS d(sg, result, tgt, eWeights, edgesOrientation, tolerance);
      retVal = d.searchPaths(src);
      graph->delSubGraph(sg);
    }
  }
  if (!retVal)
    // nothing to undo
    graph->pop();
  return retVal;
}