File: Dendrogram.cpp

package info (click to toggle)
tulip 6.0.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 196,224 kB
  • sloc: cpp: 571,851; ansic: 13,983; python: 4,105; sh: 1,555; yacc: 522; xml: 484; makefile: 168; pascal: 148; lex: 55
file content (206 lines) | stat: -rw-r--r-- 6,838 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/**
 *
 * This file is part of Tulip (https://tulip.labri.fr)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
#include <tulip/GraphTools.h>
#include "TreeTools.h"
#include "Orientation.h"
#include "DatasetTools.h"
#include "Dendrogram.h"
using namespace std;
using namespace tlp;

PLUGIN(Dendrogram)

//====================================================================
Dendrogram::Dendrogram(const tlp::PluginContext *context) : LayoutAlgorithm(context) {
  addNodeSizePropertyParameter(this);
  addOrientationParameters(this);
  addSpacingParameters(this);
}

//====================================================================
Dendrogram::~Dendrogram() {}
//====================================================================
void Dendrogram::computeLevelHeights(tlp::Graph *tree, tlp::node n, unsigned int depth,
                                     OrientableSizeProxy *oriSize) {
  if (levelHeights.size() == depth)
    levelHeights.push_back(0);

  float nodeHeight = oriSize->getNodeValue(n).getH();

  if (nodeHeight > levelHeights[depth])
    levelHeights[depth] = nodeHeight;

  for (auto on : tree->getOutNodes(n))
    computeLevelHeights(tree, on, depth + 1, oriSize);
}
//====================================================================
bool Dendrogram::run() {
  orientationType mask = getMask(dataSet);
  OrientableLayout oriLayout(result, mask);
  SizeProperty *size;

  if (!getNodeSizePropertyParameter(dataSet, size))
    size = graph->getProperty<SizeProperty>("viewSize");

  OrientableSizeProxy oriSize(size, mask);
  getSpacingParameters(dataSet, nodeSpacing, spacing);

  if (pluginProgress)
    pluginProgress->showPreview(false);

  // push a temporary graph state (not redoable)
  // preserving layout updates
  std::vector<PropertyInterface *> propsToPreserve;

  if (!result->getName().empty())
    propsToPreserve.push_back(result);

  graph->push(false, &propsToPreserve);

  tree = TreeTest::computeTree(graph, pluginProgress);

  if (pluginProgress && pluginProgress->state() != TLP_CONTINUE) {
    graph->pop();
    return pluginProgress->state() != TLP_CANCEL;
  }

  root = tree->getSource();
  computeLevelHeights(tree, root, 0, &oriSize);

  // check if the specified layer spacing is greater
  // than the max of the minimum layer spacing of the tree
  for (unsigned int i = 0; i < levelHeights.size() - 1; ++i) {
    float minLayerSpacing = (levelHeights[i] + levelHeights[i + 1]) / 2;

    if (minLayerSpacing + nodeSpacing > spacing)
      spacing = minLayerSpacing + nodeSpacing;
  }

  setAllNodesCoordX(root, 0.f, &oriLayout, &oriSize);
  shiftAllNodes(root, 0.f, &oriLayout);
  setAllNodesCoordY(&oriLayout, &oriSize);
  oriLayout.setOrthogonalEdge(graph, spacing);

  // forget last temporary graph state
  graph->pop();

  return true;
}

//====================================================================
float Dendrogram::setAllNodesCoordX(tlp::node n, float rightMargin, OrientableLayout *oriLayout,
                                    OrientableSizeProxy *oriSize) {
  float leftMargin = rightMargin;

  for (auto currentNode : tree->getOutNodes(n)) {
    leftMargin = setAllNodesCoordX(currentNode, leftMargin, oriLayout, oriSize);
  }

  const float nodeWidth = oriSize->getNodeValue(n).getW() + nodeSpacing;

  if (isLeaf(tree, n))
    leftMargin = rightMargin + nodeWidth;

  const float freeRange = leftMargin - rightMargin;

  float posX;

  if (isLeaf(tree, n))
    posX = freeRange / 2.f + rightMargin;
  else
    posX = computeFatherXPosition(n, oriLayout);

  const float rightOverflow = max(rightMargin - (posX - nodeWidth / 2.f), 0.f);
  const float leftOverflow = max((posX + nodeWidth / 2.f) - leftMargin, 0.f);
  leftshift[n] = rightOverflow;

  setNodePosition(n, posX, 0.f, 0.f, oriLayout);
  return leftMargin + leftOverflow + rightOverflow;
}

//====================================================================
void Dendrogram::setAllNodesCoordY(OrientableLayout *oriLayout, OrientableSizeProxy *oriSize) {
  float maxYLeaf = -FLT_MAX;
  setCoordY(root, maxYLeaf, oriLayout, oriSize);

  for (auto currentNode : tree->nodes()) {
    if (isLeaf(tree, currentNode)) {
      OrientableCoord coord = oriLayout->getNodeValue(currentNode);
      float newY = maxYLeaf;
      float coordX = coord.getX();
      float coordZ = coord.getZ();
      setNodePosition(currentNode, coordX, newY, coordZ, oriLayout);
    }
  }
}

//====================================================================
float Dendrogram::computeFatherXPosition(tlp::node father, OrientableLayout *oriLayout) {
  float minX = FLT_MAX;
  float maxX = -FLT_MAX;

  for (auto currentNode : tree->getOutNodes(father)) {
    const float x = oriLayout->getNodeValue(currentNode).getX() + leftshift[currentNode];
    minX = min(minX, x);
    maxX = max(maxX, x);
  }

  return (maxX + minX) / 2.f;
}

//====================================================================
void Dendrogram::shiftAllNodes(tlp::node n, float shift, OrientableLayout *oriLayout) {
  OrientableCoord coord = oriLayout->getNodeValue(n);
  shift += leftshift[n];
  float coordX = coord.getX();

  coord.setX(coordX + shift);
  oriLayout->setNodeValue(n, coord);

  for (auto on : tree->getOutNodes(n))
    shiftAllNodes(on, shift, oriLayout);
}

//====================================================================
inline void Dendrogram::setNodePosition(tlp::node n, float x, float y, float z,
                                        OrientableLayout *oriLayout) {
  OrientableCoord coord = oriLayout->createCoord(x, y, z);
  oriLayout->setNodeValue(n, coord);
}

//====================================================================
void Dendrogram::setCoordY(tlp::node n, float &maxYLeaf, OrientableLayout *oriLayout,
                           OrientableSizeProxy *oriSize) {
  if (tree->indeg(n) != 0) {
    node fatherNode = tree->getInNode(n, 1);
    OrientableCoord coord = oriLayout->getNodeValue(n);
    OrientableCoord coordFather = oriLayout->getNodeValue(fatherNode);
    float nodeY = coordFather.getY() + spacing;

    coord.setY(nodeY);
    oriLayout->setNodeValue(n, coord);

    if (isLeaf(tree, n)) {
      maxYLeaf = max(maxYLeaf, nodeY);
    }
  }

  for (auto on : tree->getOutNodes(n))
    setCoordY(on, maxYLeaf, oriLayout, oriSize);
}