1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
/**
*
* This file is part of Tulip (https://tulip.labri.fr)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <algorithm>
#include <numeric>
#include <tulip/GraphParallelTools.h>
#include <tulip/LayoutProperty.h>
#include <tulip/SizeProperty.h>
#include "randomkit.h"
using namespace std;
using namespace tlp;
/** \file
* \brief This plugin is an implementation of the FORBID Overlap Removal
* algorithm first published as:
* Giovannangeli, L., Lalanne, F., Giot, R., & Bourqui, R. (2022, September).
* FORBID: Fast Overlap Removal By stochastic gradIent Descent for Graph Drawing.
* In International Symposium on Graph Drawing and Network Visualization (pp. 61-76). Cham:
* Springer International Publishing. doi: https://dx.doi.org/10.1007/978-3-031-22203-0_6 It is
* fully inspired by the original source code found in
* https://github.com/LoannGio/FORBID/tree/master/src
*/
typedef Vec2f Coord2D;
typedef Vec2f Size2D;
struct Rect2D {
Coord2D pos;
Size2D size;
inline auto x() const {
return pos.x();
}
inline auto y() const {
return pos.y();
}
inline auto width() const {
return size.width();
}
inline auto height() const {
return size.height();
}
Rect2D(float x = 0., float y = 0., float w = 0., float h = 0.) {
pos.x() = x;
pos.y() = y;
size.width() = w;
size.height() = h;
}
};
bool overlapCheck(Rect2D const &r1, Rect2D const &r2) {
auto w1 = r1.width() / 2;
auto h1 = r1.height() / 2;
auto w2 = r2.width() / 2;
auto h2 = r2.height() / 2;
double minR = std::min(r1.x() + w1, r2.x() + w2);
double maxL = std::max(r1.x() - w1, r2.x() - w2);
if (maxL >= minR)
return false;
double minT = std::min(r1.y() + h1, r2.y() + h2);
double maxB = std::max(r1.y() - h1, r2.y() - h2);
if (maxB >= minT)
return false;
return true;
}
void sortNodesByX(vector<Rect2D> &rects, vector<size_t> &sortedIdx) {
// sort indexes according to x() values
std::stable_sort(sortedIdx.begin(), sortedIdx.end(),
[rects](size_t i1, size_t i2) { return rects[i1].x() < rects[i2].x(); });
}
bool scanLineOverlapCheck(vector<Rect2D> &rects, vector<size_t> &sortedIdx) {
sortNodesByX(rects, sortedIdx);
auto numNodes = rects.size();
for (size_t i = 0; i < numNodes; ++i) {
Rect2D &ri = rects[sortedIdx[i]];
for (size_t j = i + 1; j < numNodes; ++j) {
Rect2D &rj = rects[sortedIdx[j]];
if (overlapCheck(ri, rj))
return true;
else if ((rj.x() - rj.width() / 2) > (ri.x() + ri.width() / 2))
break;
}
}
return false;
}
vector<tuple<int, int>> getAllOverlaps(vector<Rect2D> &rects, vector<size_t> &sortedIdx) {
sortNodesByX(rects, sortedIdx);
vector<tuple<int, int>> overlaps;
auto numNodes = rects.size();
for (size_t i = 0; i < numNodes; ++i) {
Rect2D &ri = rects[sortedIdx[i]];
for (size_t j = i + 1; j < numNodes; ++j) {
Rect2D &rj = rects[sortedIdx[j]];
if (overlapCheck(ri, rj))
overlaps.emplace_back(make_tuple(sortedIdx[i], sortedIdx[j]));
else if ((rj.x() - rj.width() / 2) > (ri.x() + ri.width() / 2))
break;
}
}
return overlaps;
}
inline double vecNorm2D(double vec_x, double vec_y) {
return sqrt(vec_x * vec_x + vec_y * vec_y);
}
inline double dist2D(Coord2D const &p1, Coord2D const &p2) {
return vecNorm2D(p1.x() - p2.x(), p1.y() - p2.y());
}
double maxScaleRatio(vector<Rect2D> &rects, vector<size_t> &sortedIdx) {
double padding = 1e-4;
double maxRatio = 1.;
auto overlaps = getAllOverlaps(rects, sortedIdx);
for (unsigned int i = 0; i < overlaps.size(); ++i) {
auto [u, v] = overlaps[i];
auto actualDist = dist2D(rects[u].pos, rects[v].pos);
double actualX = rects[u].x() - rects[v].x();
double actualY = rects[u].y() - rects[v].y();
double desiredWidth = (rects[u].width() + rects[v].width()) / 2 + padding;
double desiredHeight = (rects[u].height() + rects[v].height()) / 2 + padding;
double widthRatio = desiredWidth / actualX;
double heightRatio = desiredHeight / actualY;
double unoverlapRatio = min(abs(widthRatio), abs(heightRatio));
actualX *= unoverlapRatio;
actualY *= unoverlapRatio;
double optimalDist = vecNorm2D(actualX, actualY);
double ratio = optimalDist / actualDist;
maxRatio = max(maxRatio, ratio);
}
return maxRatio;
}
void scaleLayout(vector<Rect2D> &rects, double scaleFactor) {
auto numNodes = rects.size();
for (size_t i = 0; i < numNodes; ++i) {
rects[i].pos *= scaleFactor;
}
}
bool isCurrentScaleSolvable(vector<Rect2D> &rects) {
double areas_sum = 0;
double min_x = DBL_MAX;
double min_y = DBL_MAX;
double max_x = -DBL_MAX;
double max_y = -DBL_MAX;
auto numNodes = rects.size();
for (size_t i = 0; i < numNodes; ++i) {
Rect2D &r = rects[i];
double x = r.x();
double y = r.y();
double w = r.width();
double h = r.height();
areas_sum += w * h;
double left = x - w / 2;
double right = x + w / 2;
double top = y + h / 2;
double bot = y - h / 2;
if (left < min_x)
min_x = left;
if (right > max_x)
max_x = right;
if (bot < min_y)
min_y = bot;
if (top > max_y)
max_y = top;
}
double bb_area = (max_x - min_x) * (max_y - min_y);
return bb_area >= areas_sum;
}
struct term {
size_t i, j;
double d, w;
bool o;
term(size_t i, size_t j, double d, double w, bool o) : i(i), j(j), d(d), w(w), o(o) {}
term(size_t i, size_t j, double d, double w) : i(i), j(j), d(d), w(w) {}
};
// S_GD2 function, taken from https://github.com/jxz12/s_gd2/blob/master/cpp/s_gd2/layout.cpp
vector<double> schedule(const vector<term> &terms, int t_max, double eps) {
double w_min = terms[0].w, w_max = terms[0].w;
for (size_t i = 1; i < terms.size(); i++) {
const double &w = terms[i].w;
if (w < w_min)
w_min = w;
if (w > w_max)
w_max = w;
}
double eta_max = 1.0 / w_min;
double eta_min = eps / w_max;
double lambda = log(eta_max / eta_min) / (t_max - 1);
// initialize step sizes
vector<double> etas;
etas.reserve(t_max);
for (int t = 0; t < t_max; t++)
etas.push_back(eta_max * exp(-lambda * t));
return etas;
}
void fisheryates_shuffle(vector<term> &terms, rk_state &rstate) {
size_t n = terms.size();
for (size_t i = n - 1; i >= 1; i--) {
unsigned j = rk_interval(i, &rstate);
term temp = terms[i];
terms[i] = terms[j];
terms[j] = temp;
}
}
vector<term> layoutToTerms(vector<Rect2D> &rects, float alpha, float k) {
auto numNodes = rects.size();
vector<term> terms;
for (size_t i = 0; i < numNodes; i++) {
Rect2D &ri = rects[i];
for (size_t j = i + 1; j < numNodes; j++) {
double d_ij, w_ij;
bool overlap;
Rect2D &rj = rects[j];
if (overlapCheck(ri, rj)) {
// there is overlap
d_ij = vecNorm2D((ri.width() + rj.width()) / 2, (ri.height() + rj.height()) / 2);
w_ij = pow(d_ij, k * alpha);
overlap = true;
} else {
d_ij = dist2D(ri.pos, rj.pos);
w_ij = pow(d_ij, alpha);
overlap = false;
}
terms.push_back(term(i, j, d_ij, w_ij, overlap));
}
}
return terms;
}
// S_GD2 optim algorithm, adapted from
// https://github.com/jxz12/s_gd2/blob/master/cpp/s_gd2/layout.cpp
void OPTIMIZATION_PASS(vector<Rect2D> &rects, vector<term> &terms, const vector<double> &etas,
float alpha, float k, float minMove) {
rk_state rstate;
rk_seed(0, &rstate);
double mvt_sum;
unsigned int i_eta;
for (i_eta = 0; i_eta < etas.size(); i_eta++) {
const double eta = etas[i_eta];
unsigned n_terms = terms.size();
if (n_terms == 0)
return;
fisheryates_shuffle(terms, rstate);
mvt_sum = 0;
for (unsigned i_term = 0; i_term < n_terms; i_term++) {
const term &t = terms[i_term];
/*if (true || t.o)*/ {
double mu = eta * t.w;
if (mu > 1)
mu = 1;
Coord2D &pi = rects[t.i].pos;
Coord2D &pj = rects[t.j].pos;
double dx = pi.x() - pj.x();
double dy = pi.y() - pj.y();
double mag = sqrt(dx * dx + dy * dy);
if (mag != 0) {
double r = (mu * (mag - t.d)) / (2 * mag);
double r_x = r * dx;
double r_y = r * dy;
mvt_sum += abs(r_x) + abs(r_y);
pi.x() -= r_x;
pi.y() -= r_y;
pj.x() += r_x;
pj.y() += r_y;
}
}
}
if (mvt_sum < minMove)
break;
terms = layoutToTerms(rects, alpha, k);
}
}
class FORBIDAlgorithm : public tlp::LayoutAlgorithm {
const double eps = 0.01;
float alpha, k, minMove, scaleStep;
unsigned int maxIter, maxPasses;
bool prime;
public:
PLUGININFORMATION(
"FORBID", "P. Mary", "01/08/2024",
"Implements the FORBID algorithm, an overlap removal "
"algorithm first published as:<br/>"
"<b>FORBID: Fast Overlap Removal By stochastic gradIent "
"Descent for Graph Drawing</b>,<br/>"
"Giovannangeli, L., Lalanne, F., Giot, R., & Bourqui, R. (2022, September)."
" In International Symposium on Graph Drawing and Network Visualization (pp. 61-76). Cham: Springer International Publishing.<br/>"
"doi: <a href=\"https://dx.doi.org/10.1007/978-3-031-22203-0_6\">10.1007/978-3-031-22203-0_6</a>",
"1.0", "Misc")
FORBIDAlgorithm(const tlp::PluginContext *context)
: tlp::LayoutAlgorithm(context), alpha(2), k(4), minMove(0.000001), scaleStep(0.1),
maxIter(30), maxPasses(100), prime(true) {
addInParameter<LayoutProperty>("initial layout", "The property used as input of nodes layout.",
"viewLayout");
addInParameter<SizeProperty>("bounding box", "The property used for nodes sizes.", "viewSize");
addInParameter<float>(
"alpha",
"The weight factor for ideal distance for both overlapped and non-overlapped pairs of nodes",
"2");
addInParameter<float>("k", "The additional weight factor for overlapped pairs of nodes", "4");
addInParameter<float>(
"minimal movement",
"The threshold value for the optimization pass. The pass ends, if the sum of nodes movement is below that threshold.",
"0.000001");
addInParameter<unsigned int>(
"max iterations",
"The maximum number of iterations in each pass in the optimization algorithm", "30");
addInParameter<unsigned int>(
"max passes", "The maximum number of passes before exiting (should not be reached)", "100");
addInParameter<float>(
"scale step", "The minimal step size that stops the binary search for the optimal scale",
"0.1");
addInParameter<bool>("prime", "Indicates whether to use the FORBID or FORBID' variant", "true");
}
~FORBIDAlgorithm() override {}
void passInOptim(vector<Rect2D> &rects) {
vector<term> orig_terms = layoutToTerms(rects, alpha, k);
vector<double> etas = schedule(orig_terms, maxIter, eps);
OPTIMIZATION_PASS(rects, orig_terms, etas, alpha, k, minMove);
}
bool run() override {
if (pluginProgress) {
// user cannot interact while computing
pluginProgress->showPreview(false);
pluginProgress->showStops(false);
}
LayoutProperty *viewLayout = nullptr;
SizeProperty *viewSize = nullptr;
if (dataSet != nullptr) {
dataSet->get("initial layout", viewLayout);
dataSet->get("bounding box", viewSize);
dataSet->get("alpha", alpha);
dataSet->get("k", k);
dataSet->get("minimal movement", minMove);
dataSet->get("scale step", scaleStep);
dataSet->get("max iterations", maxIter);
dataSet->get("max passes", maxPasses);
dataSet->get("prime", prime);
}
if (viewLayout == nullptr)
viewLayout = graph->getProperty<LayoutProperty>("viewLayout");
if (viewSize == nullptr)
viewSize = graph->getProperty<SizeProperty>("viewSize");
// initialize result for edges
result->setAllEdgeValue(viewLayout->getEdgeDefaultValue());
for (auto e : viewLayout->getNonDefaultValuatedEdges())
result->setEdgeValue(e, viewLayout->getEdgeValue(e));
// set initial nodes pos, sizes, and sorted indexes
auto numNodes = graph->numberOfNodes();
vector<Rect2D> rects(numNodes);
vector<size_t> sortedIdx(numNodes);
TLP_PARALLEL_MAP_NODES_AND_INDICES(graph, [&](const node n, unsigned int i) {
auto pos = viewLayout->getNodeValue(n);
rects[i].pos.set(pos.x(), pos.y());
auto size = viewSize->getNodeValue(n);
rects[i].size.set(size.width(), size.height());
sortedIdx[i] = i;
});
// nothing to do if there is no overlap
if (scanLineOverlapCheck(rects, sortedIdx) ||
// or it can be solved at the current scale
(passInOptim(rects), scanLineOverlapCheck(rects, sortedIdx))) {
// scale layout loop
double upperScale = maxScaleRatio(rects, sortedIdx);
double lowerScale = 1.;
double prevScale = 1.;
double curScale = 1.;
unsigned int numPasses = 0;
vector<Rect2D> *scaledRects = nullptr;
while (numPasses++ < maxPasses) {
curScale = (upperScale + lowerScale) / 2;
double scaleFactor = curScale / prevScale;
prevScale = curScale;
if (prime) {
if (!scaledRects)
scaledRects = new vector<Rect2D>(rects);
scaleLayout(*scaledRects, scaleFactor);
rects = *scaledRects;
} else
scaleLayout(rects, scaleFactor);
passInOptim(rects);
if (scanLineOverlapCheck(rects, sortedIdx))
lowerScale = curScale;
else { // no overlap
if (upperScale - lowerScale < scaleStep)
break;
else
upperScale = curScale;
}
}
delete scaledRects;
}
// finally set values
TLP_MAP_NODES_AND_INDICES(graph, [&](const node n, unsigned int i) {
result->setNodeValue(n, Coord(rects[i].pos, 0.));
});
return true;
}
};
PLUGIN(FORBIDAlgorithm)
|