1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
/**
*
* This file is part of Tulip (https://tulip.labri.fr)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#include <tulip/TulipPluginHeaders.h>
#include <cmath>
using namespace tlp;
/** \addtogroup size */
/// AutoSize.cpp - Compute size in order to prevent node-node overlapping
/**
* This plugin compute the size of nodes and edges such that node-node overlapping does not exist
* (if it is possible).
* and edge sizes are proportional to node sizes.
*
* \author David Auber Bordeaux University France: Email:auber@labri.fr
*/
class AutoSize : public SizeAlgorithm {
public:
PLUGININFORMATION("Auto Sizing", "Auber", "04/05/2001",
"Resize the nodes and edges of a graph so that the graph gets easy to read. "
"The size of a node will depend on the number of its sons.",
"1.0", "Size")
AutoSize(const tlp::PluginContext *context) : SizeAlgorithm(context) {}
bool run() override {
for (auto n : graph->nodes())
result->setNodeValue(n, getNodeValue(n));
for (auto e : graph->edges())
result->setEdgeValue(e, getEdgeValue(e));
return true;
}
private:
Size getNodeValue(const node n) {
LayoutProperty *entryLayout = graph->getProperty<LayoutProperty>("viewLayout");
SizeProperty *entrySize = graph->getProperty<SizeProperty>("viewSize");
// Compute the minimal distance to one neighbour.
const Coord tmp1(entryLayout->getNodeValue(n));
double dist = DBL_MAX;
for (auto neigh : graph->nodes()) {
if (neigh != n) {
const Coord tmp2(entryLayout->getNodeValue(neigh));
double tmpDist = sqrt((tmp1.getX() - tmp2.getX()) * (tmp1.getX() - tmp2.getX()) +
(tmp1.getY() - tmp2.getY()) * (tmp1.getY() - tmp2.getY()) +
(tmp1.getZ() - tmp2.getZ()) * (tmp1.getZ() - tmp2.getZ()));
dist = std::min(dist, tmpDist);
}
}
if (dist != DBL_MAX) {
return Size(dist / 2, dist / 2, dist / 2);
} else {
return entrySize->getNodeValue(n);
}
}
Size getEdgeValue(const edge e) {
auto eEnds = graph->ends(e);
Size s(result->getNodeValue(eEnds.first));
Size t(result->getNodeValue(eEnds.second));
Coord tmp(s.getW(), s.getH(), s.getD());
Coord tmp2(t.getW(), t.getH(), t.getD());
float sizes = tmp.norm();
float sizet = tmp2.norm();
return (Size(sizes / 16, sizet / 16, sizet / 4));
}
};
PLUGIN(AutoSize)
|