1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
|
/*
* Flexible B-tree implementation. Supports reference counting for
* copy-on-write, user-defined node properties, and variable
* degree.
*
* This file is copyright 2001,2004 Simon Tatham.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* TODO:
*
* Possibly TODO in future, but may not be sensible in this code
* architecture:
*
* - user write properties.
* * this all happens during write_unlock(), I think. Except
* that we'll now need an _internal_ write_unlock() which
* does everything except user write properties. Sigh.
* * note that we also need a transform function for elements
* (rot13 will certainly require this, and reverse will
* require it if the elements themselves are in some way
* reversible).
*
* Still untested:
* - searching on user read properties.
* - user-supplied copy function.
* - bt_add when element already exists.
* - bt_del when element doesn't.
* - splitpos with before==TRUE.
* - split() on sorted elements (but it should be fine).
* - bt_replace, at all (it won't be useful until we get user read
* properties).
* - bt_index_w (won't make much sense until we start using
* user-supplied copy fn).
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifdef TEST
#include <stdio.h>
#include <stdarg.h>
#endif
#include "btree.h"
#ifdef TEST
static void set_invalid_property(void *prop);
#endif
/* ----------------------------------------------------------------------
* Type definitions.
*/
typedef union nodecomponent nodecomponent;
typedef nodecomponent *nodeptr;
/*
* For type-checking purposes, and to ensure I don't accidentally
* confuse node_addr with node_ptr during implementation, I'll
* define node_addr for the in-memory case as being a struct
* containing only a nodeptr.
*
* This unfortunately needs to go in btree.h so that clients
* writing user properties can know about the nodecomponent
* structure.
*/
typedef struct {
nodeptr p;
} node_addr;
/*
* A B-tree node is a horrible thing when you're trying to be
* flexible. It is of variable size, and it contains a variety of
* distinct types of thing: nodes, elements, some counters, some
* user-defined properties ... it's a horrible thing. So we define
* it as an array of unions, each union being either an `int' or a
* `bt_element_t' or a `node_addr'...
*/
union nodecomponent {
int i;
node_addr na;
bt_element_t ep;
};
static const node_addr NODE_ADDR_NULL = { NULL };
/*
* The array of nodecomponents will take the following form:
*
* - (maxdegree) child pointers.
* - (maxdegree-1) element pointers.
* - one subtree count (current number of child pointers that are
* valid; note that `valid' doesn't imply non-NULL).
* - one element count.
* - one reference count.
*/
struct btree {
int mindegree; /* min number of subtrees */
int maxdegree; /* max number of subtrees */
int depth; /* helps to store this explicitly */
node_addr root;
cmpfn_t cmp;
copyfn_t copy;
freefn_t freeelt;
int propsize, propalign, propoffset;
propmakefn_t propmake;
propmergefn_t propmerge;
void *userstate; /* passed to all user functions */
};
/* ----------------------------------------------------------------------
* Memory management routines and other housekeeping.
*/
#ifdef HAVE_ALLOCA
# define ialloc(x) alloca(x)
# define ifree(x)
#else
# define ialloc(x) smalloc(x)
# define ifree(x) sfree(x)
#endif
#define new1(t) ( (t *) smalloc(sizeof(t)) )
#define newn(t, n) ( (t *) smalloc((n) * sizeof(t)) )
#define inew1(t) ( (t *) ialloc(sizeof(t)) )
#define inewn(t, n) ( (t *) ialloc((n) * sizeof(t)) )
static void *smalloc(size_t size)
{
void *ret = malloc(size);
if (!ret)
abort();
return ret;
}
static void sfree(void *p)
{
free(p);
}
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
/* We could probably do with more compiler-specific branches of this #if. */
#if defined(__GNUC__)
#define INLINE __inline
#else
#define INLINE
#endif
/* Hooks into the low-level code for test purposes. */
#ifdef TEST
void testlock(int write, int set, nodeptr n);
#else
#define testlock(w,s,n)
#endif
/* ----------------------------------------------------------------------
* Low-level helper routines, which understand the in-memory format
* of a node and know how to read-lock and write-lock.
*/
/*
* Read and write the node_addr of a child.
*/
static INLINE node_addr bt_child(btree *bt, nodeptr n, int index)
{
return n[index].na;
}
static INLINE void bt_set_child(btree *bt, nodeptr n,
int index, node_addr value)
{
n[index].na = value;
}
/*
* Read and write the address of an element.
*/
static INLINE bt_element_t bt_element(btree *bt, nodeptr n, int index)
{
return n[bt->maxdegree + index].ep;
}
static INLINE void bt_set_element(btree *bt, nodeptr n,
int index, bt_element_t value)
{
n[bt->maxdegree + index].ep = value;
}
/*
* Give the number of subtrees currently present in an element.
*/
static INLINE int bt_subtrees(btree *bt, nodeptr n)
{
return n[bt->maxdegree*2-1].i;
}
#define bt_elements(bt,n) (bt_subtrees(bt,n) - 1)
/*
* Give the minimum and maximum number of subtrees allowed in a
* node.
*/
static INLINE int bt_min_subtrees(btree *bt)
{
return bt->mindegree;
}
static INLINE int bt_max_subtrees(btree *bt)
{
return bt->maxdegree;
}
/*
* Return the count of items, and the user properties, in a
* particular subtree of a node.
*
* Note that in the in-memory form of the tree, this breaks the
* read-locking semantics, by reading the counts out of the child
* nodes without bothering to lock them. We're allowed to do this
* because this function is implemented at the same very low level
* as the implementation of bt_read_lock(), so we're allowed to
* know that read locking actually doesn't do anything.
*/
static INLINE int bt_child_count(btree *bt, nodeptr n, int index)
{
if (n[index].na.p)
return n[index].na.p[bt->maxdegree*2].i;
else
return 0;
}
static INLINE void *bt_child_prop(btree *bt, nodeptr n, int index)
{
if (n[index].na.p)
return (char *)n[index].na.p + bt->propoffset;
else
return NULL;
}
/*
* Return the count of items in a whole node.
*/
static INLINE int bt_node_count(btree *bt, nodeptr n)
{
return n[bt->maxdegree*2].i;
}
/*
* Determine whether a node is a leaf node or not.
*/
static INLINE int bt_is_leaf(btree *bt, nodeptr n)
{
return n[0].na.p == NULL;
}
/*
* Create a new write-locked node, and return a pointer to it.
*/
static INLINE nodeptr bt_new_node(btree *bt, int nsubtrees)
{
nodeptr ret = (nodecomponent *)smalloc(bt->propoffset + bt->propsize);
ret[bt->maxdegree*2-1].i = nsubtrees;
ret[bt->maxdegree*2+1].i = 1; /* reference count 1 */
#ifdef TEST
set_invalid_property(ret + bt->maxdegree * 2 + 2);
#else
memset((char *)ret + bt->propoffset, 0, bt->propsize);
#endif
testlock(TRUE, TRUE, ret);
return ret;
}
/*
* Destroy a node (must be write-locked).
*/
static INLINE void bt_destroy_node(btree *bt, nodeptr n)
{
testlock(TRUE, FALSE, n);
/* Free the property. */
bt->propmerge(bt->userstate, NULL, NULL, n + bt->maxdegree * 2 + 2);
sfree(n);
}
/*
* Take an existing node and prepare to re-use it in a new context.
*/
static INLINE nodeptr bt_reuse_node(btree *bt, nodeptr n, int nsubtrees)
{
testlock(TRUE, FALSE, n);
testlock(TRUE, TRUE, n);
n[bt->maxdegree*2-1].i = nsubtrees;
return n;
}
/*
* Return an extra reference to a node, for purposes of cloning. So
* we have to update its reference count as well.
*/
static INLINE node_addr bt_ref_node(btree *bt, node_addr n)
{
if (n.p)
n.p[bt->maxdegree*2+1].i++;
return n;
}
/*
* Drop a node's reference count, for purposes of freeing. Returns
* the new reference count. Typically this will be tested against
* zero to see if the node needs to be physically freed; hence a
* NULL node_addr causes a return of 1 (because this isn't
* necessary).
*/
static INLINE int bt_unref_node(btree *bt, node_addr n)
{
if (n.p) {
n.p[bt->maxdegree*2+1].i--;
return n.p[bt->maxdegree*2+1].i;
} else
return 1; /* a NULL node is considered OK */
}
/*
* Clone a node during write unlocking, if its reference count is
* more than one.
*/
static nodeptr bt_clone_node(btree *bt, nodeptr n)
{
int i;
nodeptr ret = (nodecomponent *)smalloc(bt->propoffset + bt->propsize);
memcpy(ret, n, (bt->maxdegree*2+1) * sizeof(nodecomponent));
if (bt->copy) {
for (i = 0; i < bt_elements(bt, ret); i++) {
bt_element_t *e = bt_element(bt, ret, i);
bt_set_element(bt, ret, i, bt->copy(bt->userstate, e));
}
}
ret[bt->maxdegree*2+1].i = 1; /* clone has reference count 1 */
n[bt->maxdegree*2+1].i--; /* drop original's ref count by one */
/*
* At this low level, we're allowed to reach directly into the
* subtrees to fiddle with their reference counts without
* having to lock them.
*/
for (i = 0; i < bt_subtrees(bt, ret); i++) {
node_addr na = bt_child(bt, ret, i);
if (na.p)
na.p[bt->maxdegree*2+1].i++; /* inc ref count of each child */
}
/*
* Copy the user property explicitly (in case it contains a
* pointer to an allocated area).
*/
memset((char *)ret + bt->propoffset, 0, bt->propsize);
bt->propmerge(bt->userstate, NULL, n + bt->maxdegree * 2 + 2,
ret + bt->maxdegree * 2 + 2);
return ret;
}
/*
* Return the node_addr for a currently locked node. NB that this
* means node movement must take place during _locking_ rather than
* unlocking!
*/
static INLINE node_addr bt_node_addr(btree *bt, nodeptr n)
{
node_addr ret;
ret.p = n;
return ret;
}
/*
* The bt_write_lock and bt_read_lock functions should gracefully
* handle being asked to write-lock a null node pointer, and just
* return a null nodeptr.
*/
static INLINE nodeptr bt_write_lock_child(btree *bt, nodeptr a, int index)
{
node_addr addr = bt_child(bt, a, index);
if (addr.p && addr.p[bt->maxdegree*2+1].i > 1) {
nodeptr clone = bt_clone_node(bt, addr.p);
bt_set_child(bt, a, index, bt_node_addr(bt, clone));
testlock(TRUE, TRUE, clone);
return clone;
}
testlock(TRUE, TRUE, addr.p);
return addr.p;
}
static INLINE nodeptr bt_write_lock_root(btree *bt)
{
node_addr addr = bt->root;
if (addr.p && addr.p[bt->maxdegree*2+1].i > 1) {
nodeptr clone = bt_clone_node(bt, addr.p);
bt->root = bt_node_addr(bt, clone);
testlock(TRUE, TRUE, clone);
return clone;
}
testlock(TRUE, TRUE, addr.p);
return addr.p;
}
static INLINE nodeptr bt_read_lock(btree *bt, node_addr a)
{
testlock(FALSE, TRUE, a.p);
return a.p;
}
#define bt_read_lock_root(bt) (bt_read_lock(bt, (bt)->root))
#define bt_read_lock_child(bt,a,index) (bt_read_lock(bt,bt_child(bt,a,index)))
static INLINE void bt_write_relock(btree *bt, nodeptr n, int props)
{
int i, ns, count;
/*
* Update the count in the node.
*/
ns = bt_subtrees(bt, n);
count = ns-1; /* count the elements */
for (i = 0; i < ns; i++)
count += bt_child_count(bt, n, i);
n[bt->maxdegree*2].i = count;
testlock(TRUE, FALSE, n);
testlock(TRUE, TRUE, n);
/*
* Update user read properties.
*/
if (props && bt->propsize) {
void *prevprop, *eltprop, *thisprop, *childprop;
prevprop = NULL;
eltprop = ialloc(bt->propsize);
thisprop = (void *)((char *)n + bt->propoffset);
for (i = 0; i < ns; i++) {
/* Merge a subtree's property into this one.
* Initially prevprop==NULL, meaning to just copy. */
if ( (childprop = bt_child_prop(bt, n, i)) != NULL ) {
bt->propmerge(bt->userstate, prevprop, childprop, thisprop);
prevprop = thisprop;
}
if (i < ns-1) {
/* Now merge in the separating element. */
bt->propmake(bt->userstate, bt_element(bt, n, i), eltprop);
bt->propmerge(bt->userstate, prevprop, eltprop, thisprop);
prevprop = thisprop;
}
}
ifree(eltprop);
}
}
static INLINE node_addr bt_write_unlock_internal(btree *bt, nodeptr n,
int props)
{
node_addr ret;
bt_write_relock(bt, n, props);
testlock(TRUE, FALSE, n);
ret.p = n;
return ret;
}
static INLINE node_addr bt_write_unlock(btree *bt, nodeptr n)
{
return bt_write_unlock_internal(bt, n, TRUE);
}
static INLINE void bt_read_unlock(btree *bt, nodeptr n)
{
/*
* For trees in memory, we do nothing here, except run some
* optional testing.
*/
testlock(FALSE, FALSE, n);
}
/* ----------------------------------------------------------------------
* Higher-level helper functions, which should be independent of
* the knowledge of precise node structure in the above code.
*/
/*
* Return the count of items below a node that appear before the
* start of a given subtree.
*/
static int bt_child_startpos(btree *bt, nodeptr n, int index)
{
int pos = 0;
while (index > 0) {
index--;
pos += bt_child_count(bt, n, index) + 1; /* 1 for separating elt */
}
return pos;
}
/*
* Create a new root node for a tree.
*/
static void bt_new_root(btree *bt, node_addr left, node_addr right,
bt_element_t element)
{
nodeptr n;
n = bt_new_node(bt, 2);
bt_set_child(bt, n, 0, left);
bt_set_child(bt, n, 1, right);
bt_set_element(bt, n, 0, element);
bt->root = bt_write_unlock(bt, n);
bt->depth++;
}
/*
* Discard the root node of a tree, and enshrine a new node as the
* root. Expects to be passed a write-locked nodeptr to the old
* root.
*/
static void bt_shift_root(btree *bt, nodeptr n, node_addr na)
{
bt_destroy_node(bt, n);
bt->root = na;
bt->depth--;
}
/*
* Given a numeric index within a node, find which subtree we would
* descend to in order to find that index.
*
* Updates `pos' to give the numeric index within the subtree
* found. Also returns `ends' (if non-NULL), which has bit 0 set if
* the index is at the very left edge of the subtree, and/or bit 1
* if it's at the very right edge.
*
* Return value is the number of the subtree (0 upwards).
*/
#define ENDS_NONE 0
#define ENDS_LEFT 1
#define ENDS_RIGHT 2
#define ENDS_BOTH 3
static int bt_lookup_pos(btree *bt, nodeptr n, int *pos, int *ends)
{
int child = 0;
int nchildren = bt_subtrees(bt, n);
while (child < nchildren) {
int count = bt_child_count(bt, n, child);
if (*pos <= count) {
if (ends) {
*ends = 0;
if (*pos == count)
*ends |= ENDS_RIGHT;
if (*pos == 0)
*ends |= ENDS_LEFT;
}
return child;
}
*pos -= count + 1; /* 1 for the separating element */
child++;
}
return -1; /* ran off the end; shouldn't happen */
}
/*
* Given an element to search for within a node, find either the
* element, or which subtree we would descend to to continue
* searching for that element.
*
* Return value is either the index of the element, or the index of
* the subtree (both 0 upwards). `is_elt' returns FALSE or TRUE
* respectively.
*
* Since this may be used by bt_find() with an alternative cmpfn_t,
* we always pass the input element as the first argument to cmp.
*/
static int bt_lookup_cmp(btree *bt, nodeptr n, bt_element_t element,
cmpfn_t cmp, int *is_elt)
{
int mintree = 0, maxtree = bt_subtrees(bt, n)-1;
while (mintree < maxtree) {
int elt = (maxtree + mintree) / 2;
int c = cmp(bt->userstate, element, bt_element(bt, n, elt));
if (c == 0) {
*is_elt = TRUE;
return elt;
} else if (c < 0) {
/*
* `element' is less than element `elt'. So it can be
* in subtree number `elt' at the highest.
*/
maxtree = elt;
} else { /* c > 0 */
/*
* `element' is greater than element `elt'. So it can
* be in subtree number (elt+1) at the lowest.
*/
mintree = elt+1;
}
}
/*
* If we reach here without returning, we must have narrowed
* our search to the point where mintree = maxtree. So the
* element is not in the node itself and we know which subtree
* to search next.
*/
assert(mintree == maxtree);
*is_elt = FALSE;
return mintree;
}
/*
* Generic transformations on B-tree nodes.
*
* This function divides essentially into an input side and an
* output side. The input side accumulates a list of items
* node,element,node,element,...,element,node; the output side
* writes those items into either one or two nodes.
*
* `intype' can be:
*
* - NODE_AS_IS. The input list is the contents of in1, followed
* by inelt, followed by the contents of in2. The `extra'
* parameters are unused, as is `inaux'.
*
* - NODE_ADD_ELT. `in2' is unused. The input list is the contents
* of `in1', but with subtree pointer number `inaux' replaced by
* extra1/inelt/extra2.
*
* - NODE_DEL_ELT. `in2' and `inelt' are unused, as is `extra2'.
* The input list is the contents of `in1', but with element
* pointer number `inaux' and its surrounding two subtrees
* replaced by extra1.
*
* Having obtained the input list, it is then written to one or two
* output nodes. If `splitpos' is NODE_JOIN, everything is written
* into one output node `out1'. Otherwise, `splitpos' is treated as
* an element index within the input list; that element is returned
* in `outelt', and the contents of the list is divided there and
* returned in nodes `out1' and `out2'.
*
* This function will re-use nodes in the `obvious' order. If two
* nodes are passed in and two nodes are output, they'll be the
* same nodes; if one node is passed in and one node output, it
* will be the same node too. If two are passed in and only one
* output, the first one will be used and the second destroyed; if
* one node is passed in and two are output, the one passed in will
* be the first of those returned, and the second will be new.
*/
#define NODE_AS_IS 1
#define NODE_ADD_ELT 2
#define NODE_DEL_ELT 3
#define NODE_JOIN -1
static void bt_xform(btree *bt, int intype, int inaux,
nodeptr in1, nodeptr in2, bt_element_t inelt,
node_addr extra1, node_addr extra2,
int splitpos, nodeptr *out1, nodeptr *out2,
bt_element_t *outelt)
{
node_addr *nodes;
bt_element_t *elements;
nodeptr ret1, ret2;
int n1, n2, off2, i, j;
nodes = inewn(node_addr, 2 * bt_max_subtrees(bt));
elements = inewn(bt_element_t, 2 * bt_max_subtrees(bt));
/*
* Accumulate the input list.
*/
switch(intype) {
case NODE_AS_IS:
n1 = bt_subtrees(bt, in1);
n2 = bt_subtrees(bt, in2);
off2 = 0;
break;
case NODE_ADD_ELT:
in2 = in1;
n1 = inaux+1;
n2 = bt_subtrees(bt, in1) - inaux;
off2 = inaux;
break;
case NODE_DEL_ELT:
in2 = in1;
n1 = inaux+1;
n2 = bt_subtrees(bt, in1) - inaux - 1;
off2 = inaux+1;
break;
}
i = j = 0;
while (j < n1) {
nodes[i] = bt_child(bt, in1, j);
if (j+1 < n1)
elements[i] = bt_element(bt, in1, j);
i++, j++;
}
if (intype == NODE_DEL_ELT) {
i--;
}
j = 0;
while (j < n2) {
nodes[i] = bt_child(bt, in2, off2+j);
if (j+1 < n2)
elements[i] = bt_element(bt, in2, off2+j);
i++, j++;
}
switch (intype) {
case NODE_AS_IS:
elements[n1-1] = inelt;
break;
case NODE_ADD_ELT:
nodes[n1-1] = extra1;
nodes[n1] = extra2;
elements[n1-1] = inelt;
break;
case NODE_DEL_ELT:
nodes[n1-1] = extra1;
break;
}
/*
* Now determine how many subtrees go in each output node, and
* actually create the nodes to be returned.
*/
if (splitpos != NODE_JOIN) {
n1 = splitpos+1, n2 = i - splitpos - 1;
if (outelt)
*outelt = elements[splitpos];
} else {
n1 = i, n2 = 0;
}
ret1 = bt_reuse_node(bt, in1, n1);
if (intype == NODE_AS_IS && in2) {
/* We have a second input node. */
if (n2)
ret2 = bt_reuse_node(bt, in2, n2);
else
bt_destroy_node(bt, in2);
} else {
/* We have no second input node. */
if (n2)
ret2 = bt_new_node(bt, n2);
else
ret2 = NULL;
}
if (out1) *out1 = ret1;
if (out2) *out2 = ret2;
for (i = 0; i < n1; i++) {
bt_set_child(bt, ret1, i, nodes[i]);
if (i+1 < n1)
bt_set_element(bt, ret1, i, elements[i]);
}
if (n2) {
if (outelt) *outelt = elements[n1-1];
for (i = 0; i < n2; i++) {
bt_set_child(bt, ret2, i, nodes[n1+i]);
if (i+1 < n2)
bt_set_element(bt, ret2, i, elements[n1+i]);
}
}
ifree(nodes);
ifree(elements);
}
/*
* Fiddly little compare functions for use in special cases of
* findrelpos. One always returns +1 (a > b), the other always
* returns -1 (a < b).
*/
static int bt_cmp_greater(void *state,
const bt_element_t a, const bt_element_t b)
{
return +1;
}
static int bt_cmp_less(void *state,
const bt_element_t a, const bt_element_t b)
{
return -1;
}
/* ----------------------------------------------------------------------
* User-visible administration routines.
*/
btree *bt_new(cmpfn_t cmp, copyfn_t copy, freefn_t freeelt,
int propsize, int propalign, propmakefn_t propmake,
propmergefn_t propmerge, void *state, int mindegree)
{
btree *ret;
ret = new1(btree);
ret->mindegree = mindegree;
ret->maxdegree = 2*mindegree;
ret->depth = 0; /* not even a root right now */
ret->root = NODE_ADDR_NULL;
ret->cmp = cmp;
ret->copy = copy;
ret->freeelt = freeelt;
ret->propsize = propsize;
ret->propalign = propalign;
ret->propoffset = sizeof(nodecomponent) * (ret->maxdegree*2 + 2);
if (propalign > 0) {
ret->propoffset += propalign - 1;
ret->propoffset -= ret->propoffset % propalign;
}
ret->propmake = propmake;
ret->propmerge = propmerge;
ret->userstate = state;
return ret;
}
static void bt_free_node(btree *bt, nodeptr n)
{
int i;
for (i = 0; i < bt_subtrees(bt, n); i++) {
node_addr na;
nodeptr n2;
na = bt_child(bt, n, i);
if (!bt_unref_node(bt, na)) {
n2 = bt_write_lock_child(bt, n, i);
bt_free_node(bt, n2);
}
}
if (bt->freeelt) {
for (i = 0; i < bt_subtrees(bt, n)-1; i++)
bt->freeelt(bt->userstate, bt_element(bt, n, i));
}
bt_destroy_node(bt, n);
}
void bt_free(btree *bt)
{
nodeptr n;
if (!bt_unref_node(bt, bt->root)) {
n = bt_write_lock_root(bt);
bt_free_node(bt, n);
}
sfree(bt);
}
btree *bt_clone(btree *bt)
{
btree *bt2;
bt2 = bt_new(bt->cmp, bt->copy, bt->freeelt, bt->propsize, bt->propalign,
bt->propmake, bt->propmerge, bt->userstate, bt->mindegree);
bt2->depth = bt->depth;
bt2->root = bt_ref_node(bt, bt->root);
return bt2;
}
/*
* Nice simple function to count the size of a tree.
*/
int bt_count(btree *bt)
{
int count;
nodeptr n;
n = bt_read_lock_root(bt);
if (n) {
count = bt_node_count(bt, n);
bt_read_unlock(bt, n);
return count;
} else {
return 0;
}
}
/* ----------------------------------------------------------------------
* Actual B-tree algorithms.
*/
/*
* Find an element by numeric index. bt_index_w is the same, but
* works with write locks instead of read locks, so it guarantees
* to return an element with only one reference to it. (You'd use
* this if you were using tree cloning, and wanted to modify the
* element once you'd found it.)
*/
bt_element_t bt_index(btree *bt, int index)
{
nodeptr n, n2;
int child, ends;
n = bt_read_lock_root(bt);
if (index < 0 || index >= bt_node_count(bt, n)) {
bt_read_unlock(bt, n);
return NULL;
}
while (1) {
child = bt_lookup_pos(bt, n, &index, &ends);
if (ends & ENDS_RIGHT) {
bt_element_t ret = bt_element(bt, n, child);
bt_read_unlock(bt, n);
return ret;
}
n2 = bt_read_lock_child(bt, n, child);
bt_read_unlock(bt, n);
n = n2;
assert(n != NULL);
}
}
bt_element_t bt_index_w(btree *bt, int index)
{
nodeptr n, n2;
int nnodes, child, ends;
nodeptr *nodes;
bt_element_t ret;
nodes = inewn(nodeptr, bt->depth+1);
nnodes = 0;
n = bt_write_lock_root(bt);
if (index < 0 || index >= bt_node_count(bt, n)) {
bt_write_unlock(bt, n);
return NULL;
}
while (1) {
nodes[nnodes++] = n;
child = bt_lookup_pos(bt, n, &index, &ends);
if (ends & ENDS_RIGHT) {
ret = bt_element(bt, n, child);
break;
}
n2 = bt_write_lock_child(bt, n, child);
n = n2;
assert(n != NULL);
}
while (nnodes-- > 0)
bt_write_unlock(bt, nodes[nnodes]);
return ret;
}
/*
* Search for an element by sorted order.
*/
bt_element_t bt_findrelpos(btree *bt, bt_element_t element, cmpfn_t cmp,
int relation, int *index)
{
nodeptr n, n2;
int child, is_elt;
bt_element_t gotit;
int pos = 0;
int count;
if (!cmp) cmp = bt->cmp;
/*
* Special case: relation LT/GT and element NULL means get an
* extreme element of the tree. We do this by fudging the
* compare function so that our NULL element will be considered
* infinitely large or infinitely small.
*/
if (element == NULL) {
assert(relation == BT_REL_LT || relation == BT_REL_GT);
if (relation == BT_REL_LT)
cmp = bt_cmp_greater; /* always returns a > b */
else
cmp = bt_cmp_less; /* always returns a < b */
}
gotit = NULL;
n = bt_read_lock_root(bt);
if (!n)
return NULL;
count = bt_node_count(bt, n);
while (n) {
child = bt_lookup_cmp(bt, n, element, cmp, &is_elt);
if (is_elt) {
pos += bt_child_startpos(bt, n, child+1) - 1;
gotit = bt_element(bt, n, child);
bt_read_unlock(bt, n);
break;
} else {
pos += bt_child_startpos(bt, n, child);
n2 = bt_read_lock_child(bt, n, child);
bt_read_unlock(bt, n);
n = n2;
}
}
/*
* Now all nodes are unlocked, and we are _either_ (a) holding
* an element in `gotit' whose index we have in `pos', _or_ (b)
* holding nothing in `gotit' but we know the index of the
* next-higher element.
*/
if (gotit) {
/*
* We have the real element. For EQ, LE and GE relations we
* can now just return it; otherwise we must return the
* next element down or up.
*/
if (relation == BT_REL_LT)
gotit = bt_index(bt, --pos);
else if (relation == BT_REL_GT)
gotit = bt_index(bt, ++pos);
} else {
/*
* We don't have the real element. For EQ relation we now
* just give up; for everything else we return the next
* element down or up.
*/
if (relation == BT_REL_LT || relation == BT_REL_LE)
gotit = bt_index(bt, --pos);
else if (relation == BT_REL_GT || relation == BT_REL_GE)
gotit = bt_index(bt, pos);
}
if (gotit && index) *index = pos;
return gotit;
}
bt_element_t bt_findrel(btree *bt, bt_element_t element, cmpfn_t cmp,
int relation)
{
return bt_findrelpos(bt, element, cmp, relation, NULL);
}
bt_element_t bt_findpos(btree *bt, bt_element_t element, cmpfn_t cmp,
int *index)
{
return bt_findrelpos(bt, element, cmp, BT_REL_EQ, index);
}
bt_element_t bt_find(btree *bt, bt_element_t element, cmpfn_t cmp)
{
return bt_findrelpos(bt, element, cmp, BT_REL_EQ, NULL);
}
/*
* Find an element by property-based search. Returns the element
* (if one is selected - the search can also terminate by
* descending to a nonexistent subtree of a leaf node, equivalent
* to selecting the _gap_ between two elements); also returns the
* index of either the element or the gap in `*index' if `index' is
* non-NULL.
*/
bt_element_t bt_propfind(btree *bt, searchfn_t search, void *sstate,
int *index)
{
nodeptr n, n2;
int i, j, count, is_elt;
void **props;
int *counts;
bt_element_t *elts;
bt_element_t *e = NULL;
props = inewn(void *, bt->maxdegree);
counts = inewn(int, bt->maxdegree);
elts = inewn(bt_element_t, bt->maxdegree);
n = bt_read_lock_root(bt);
count = 0;
while (n) {
int ntrees = bt_subtrees(bt, n);
/*
* Prepare the arguments to the search function.
*/
for (i = 0; i < ntrees; i++) {
props[i] = bt_child_prop(bt, n, i);
counts[i] = bt_child_count(bt, n, i);
if (i < ntrees-1)
elts[i] = bt_element(bt, n, i);
}
/*
* Call the search function.
*/
i = search(bt->userstate, sstate, ntrees,
props, counts, elts, &is_elt);
if (!is_elt) {
/*
* Descend to subtree i. Update `count' to consider
* everything (both subtrees and elements) before that
* subtree.
*/
for (j = 0; j < i; j++)
count += 1 + bt_child_count(bt, n, j);
n2 = bt_read_lock_child(bt, n, i);
bt_read_unlock(bt, n);
n = n2;
} else {
/*
* Return element i. Update `count' to consider
* everything (both subtrees and elements) before that
* element.
*/
for (j = 0; j <= i; j++)
count += 1 + bt_child_count(bt, n, j);
count--; /* don't count element i itself */
e = bt_element(bt, n, i);
bt_read_unlock(bt, n);
break;
}
}
ifree(props);
ifree(counts);
ifree(elts);
if (index) *index = count;
return e;
}
/*
* Replace the element at a numeric index by a new element. Returns
* the old element.
*
* Can also be used when the new element is the _same_ as the old
* element, but has changed in some way that will affect user
* properties.
*/
bt_element_t bt_replace(btree *bt, bt_element_t element, int index)
{
nodeptr n;
nodeptr *nodes;
bt_element_t ret;
int nnodes, child, ends;
nodes = inewn(nodeptr, bt->depth+1);
nnodes = 0;
n = bt_write_lock_root(bt);
if (index < 0 || index >= bt_node_count(bt, n)) {
bt_write_unlock(bt, n);
return NULL;
}
while (1) {
nodes[nnodes++] = n;
child = bt_lookup_pos(bt, n, &index, &ends);
if (ends & ENDS_RIGHT) {
ret = bt_element(bt, n, child);
bt_set_element(bt, n, child, element);
break;
}
n = bt_write_lock_child(bt, n, child);
assert(n != NULL);
}
while (nnodes-- > 0)
bt_write_unlock(bt, nodes[nnodes]);
return ret;
}
/*
* Add at a specific position. As we search down the tree we must
* write-lock every node we meet, since otherwise we might fail to
* clone nodes that will end up pointing to different things.
*/
void bt_addpos(btree *bt, bt_element_t element, int pos)
{
nodeptr n;
node_addr left, right, single;
nodeptr *nodes;
int *childposns;
int nnodes, child;
/*
* Since in a reference-counted tree we can't have parent
* links, we will have to use O(depth) space to store the list
* of nodeptrs we have gone through, so we can un-write-lock
* them when we've finished. We also store the subtree index we
* descended to at each stage.
*/
nodes = inewn(nodeptr, bt->depth+1);
childposns = inewn(int, bt->depth+1);
nnodes = 0;
n = bt_write_lock_root(bt);
assert(pos >= 0 && pos <= (n ? bt_node_count(bt, n) : 0));
/*
* Scan down the tree, write-locking nodes, until we find the
* empty subtree where we want to insert the item.
*/
while (n) {
nodes[nnodes] = n;
child = bt_lookup_pos(bt, n, &pos, NULL);
childposns[nnodes] = child;
nnodes++;
n = bt_write_lock_child(bt, n, child);
}
left = right = NODE_ADDR_NULL;
/*
* Now nodes[nnodes-1] wants to have subtree index
* childposns[nnodes-1] replaced by the node/element/node triple
* (left,element,right). Propagate this up the tree until we
* can stop.
*/
while (nnodes-- > 0) {
n = nodes[nnodes];
if (bt_subtrees(bt, n) == bt_max_subtrees(bt)) {
nodeptr lptr, rptr;
/* Split the node and carry on up. */
bt_xform(bt, NODE_ADD_ELT, childposns[nnodes],
n, NULL, element, left, right,
bt_min_subtrees(bt), &lptr, &rptr, &element);
left = bt_write_unlock(bt, lptr);
right = bt_write_unlock(bt, rptr);
} else {
bt_xform(bt, NODE_ADD_ELT, childposns[nnodes],
n, NULL, element, left, right,
NODE_JOIN, &n, NULL, NULL);
single = bt_write_unlock(bt, n);
break;
}
}
/*
* If nnodes < 0, we have just split the root and we need to
* build a new root node.
*/
if (nnodes < 0) {
bt_new_root(bt, left, right, element);
} else {
/*
* Now nodes[nnodes-1] just wants to have child pointer
* child[nnodes-1] replaced by `single', in case the
* subtree was moved. Propagate this back up to the root,
* unlocking all nodes.
*/
while (nnodes-- > 0) {
bt_set_child(bt, nodes[nnodes], childposns[nnodes], single);
single = bt_write_unlock(bt, nodes[nnodes]);
}
}
ifree(nodes);
ifree(childposns);
}
/*
* Add an element in sorted order. This is a wrapper on bt_addpos()
* which finds the numeric index to add the item at and then calls
* addpos. This isn't an optimal use of time, but it saves space by
* avoiding starting to clone multiply-linked nodes until it's
* known that the item _can_ be added to the tree (and isn't
* duplicated in it already).
*/
bt_element_t bt_add(btree *bt, bt_element_t element)
{
nodeptr n, n2;
int child, is_elt;
int pos = 0;
n = bt_read_lock_root(bt);
while (n) {
child = bt_lookup_cmp(bt, n, element, bt->cmp, &is_elt);
if (is_elt) {
bt_read_unlock(bt, n);
return bt_element(bt, n, child); /* element exists already */
} else {
pos += bt_child_startpos(bt, n, child);
n2 = bt_read_lock_child(bt, n, child);
bt_read_unlock(bt, n);
n = n2;
}
}
bt_addpos(bt, element, pos);
return element;
}
/*
* Delete an element given its numeric position. Returns the
* element deleted.
*/
bt_element_t bt_delpos(btree *bt, int pos)
{
nodeptr n, c, c2, saved_n;
nodeptr *nodes;
int nnodes, child, nroot, pos2, ends, st, splitpoint, saved_pos;
bt_element_t e, ret;
/*
* Just like in bt_add, we store the set of nodeptrs we
* write-locked on the way down, so we can unlock them on the
* way back up.
*/
nodes = inewn(nodeptr, bt->depth+1);
nnodes = 0;
n = bt_write_lock_root(bt);
nroot = TRUE;
saved_n = NULL;
if (!n || pos < 0 || pos >= bt_node_count(bt, n)) {
if (n)
bt_write_unlock(bt, n);
return NULL;
}
while (1) {
nodes[nnodes++] = n;
/*
* Find out which subtree to descend to.
*/
pos2 = pos;
child = bt_lookup_pos(bt, n, &pos, &ends);
c = bt_write_lock_child(bt, n, child);
if (c && bt_subtrees(bt, c) == bt_min_subtrees(bt)) {
/*
* We're trying to descend to a subtree that's of
* minimum size. Do something!
*/
if (child > 0) {
/*
* Either move a subtree from the left sibling, or
* merge with it. (Traditionally we would only
* merge if we can't move a subtree from _either_
* sibling, but this way avoids too many extra
* write locks.)
*/
c2 = c;
c = bt_write_lock_child(bt, n, child-1);
e = bt_element(bt, n, child-1);
st = bt_subtrees(bt, c);
if (st > bt_min_subtrees(bt))
splitpoint = st - 2;
else
splitpoint = NODE_JOIN;
child--;
} else {
/*
* Likewise on the right-hand side.
*/
c2 = bt_write_lock_child(bt, n, child+1);
e = bt_element(bt, n, child);
st = bt_subtrees(bt, c2);
if (st > bt_min_subtrees(bt))
splitpoint = bt_min_subtrees(bt);
else
splitpoint = NODE_JOIN;
}
if (splitpoint == NODE_JOIN) {
/*
* So if we're merging nodes, go to it...
*/
bt_xform(bt, NODE_AS_IS, 0,
c, c2, e, NODE_ADDR_NULL, NODE_ADDR_NULL,
NODE_JOIN, &c, NULL, NULL);
bt_xform(bt, NODE_DEL_ELT, child,
n, NULL, NULL, bt_node_addr(bt, c), NODE_ADDR_NULL,
NODE_JOIN, &n, NULL, NULL);
if (nroot && bt_subtrees(bt, n) == 1) {
/*
* Whoops, we just merged the last two children
* of the root. Better relocate the root.
*/
bt_shift_root(bt, n, bt_node_addr(bt, c));
nnodes--; /* don't leave it in nodes[]! */
n = NULL;
bt_write_relock(bt, c, TRUE);
} else
bt_write_unlock(bt, c);
} else {
/*
* Or if we're redistributing subtrees, go to that.
*/
bt_xform(bt, NODE_AS_IS, 0,
c, c2, e, NODE_ADDR_NULL, NODE_ADDR_NULL,
splitpoint, &c, &c2, &e);
bt_set_element(bt, n, child, e);
bt_write_unlock(bt, c);
bt_write_unlock(bt, c2);
}
if (n) {
/* Recompute the counts in n so we can do lookups again. */
bt_write_relock(bt, n, TRUE);
/* Having done the transform, redo the position lookup. */
pos = pos2;
child = bt_lookup_pos(bt, n, &pos, &ends);
c = bt_write_lock_child(bt, n, child);
} else {
pos = pos2;
}
}
/*
* Now see if this node contains the element we're
* looking for.
*/
if (n && (ends & ENDS_RIGHT)) {
/*
* It does. Element number `child' is the element we
* want to delete. See if this is a leaf node...
*/
if (!bt_is_leaf(bt, n)) {
/*
* It's not a leaf node. So we save the nodeptr and
* element index for later reference, and decrement
* `pos' so that we're searching for the element to its
* left, which _will_ be in a leaf node.
*/
saved_n = n;
saved_pos = child;
pos--;
} else {
/*
* We've reached a leaf node. Check to see if an
* internal-node position was stored in saved_n and
* saved_pos, and move this element there if so.
*/
if (saved_n) {
ret = bt_element(bt, saved_n, saved_pos);
bt_set_element(bt, saved_n, saved_pos,
bt_element(bt, n, child));
} else {
ret = bt_element(bt, n, child);
}
/* Then delete it from the leaf node. */
bt_xform(bt, NODE_DEL_ELT, child,
n, NULL, NULL, NODE_ADDR_NULL, NODE_ADDR_NULL,
NODE_JOIN, &n, NULL, NULL);
/*
* Final special case: if this is the root node and
* we've just deleted its last element, we should
* destroy it and leave a completely empty tree.
*/
if (nroot && bt_subtrees(bt, n) == 1) {
bt_shift_root(bt, n, NODE_ADDR_NULL);
nnodes--; /* and take it out of nodes[] */
}
/* Now we're done */
break;
}
}
/* Descend to the child and go round again. */
n = c;
nroot = FALSE;
}
/*
* All done. Zip back up the tree un-write-locking nodes.
*/
while (nnodes-- > 0)
bt_write_unlock(bt, nodes[nnodes]);
ifree(nodes);
return ret;
}
/*
* Delete an element in sorted order.
*/
bt_element_t bt_del(btree *bt, bt_element_t element)
{
int index;
if (!bt_findrelpos(bt, element, NULL, BT_REL_EQ, &index))
return NULL; /* wasn't there */
return bt_delpos(bt, index);
}
/*
* Join two trees together, given their respective depths and a
* middle element. Puts the resulting tree in the root of `bt'.
*
* This internal routine assumes that the trees have the same
* degree.
*
* The input nodeptrs are assumed to be write-locked, but none of
* their children are yet write-locked.
*/
static void bt_join_internal(btree *bt, nodeptr lp, nodeptr rp,
bt_element_t sep, int ld, int rd)
{
nodeptr *nodes;
int *childposns;
int nnodes, nodessize;
int lsub, rsub;
/*
* We will need to store parent nodes up to the difference
* between ld and rd.
*/
nodessize = (ld < rd ? rd-ld : ld-rd);
if (nodessize) { /* we may not need _any_! */
nodes = inewn(nodeptr, nodessize);
childposns = inewn(int, nodessize);
}
nnodes = 0;
if (ld > rd) {
bt->root = bt_node_addr(bt, lp);
bt->depth = ld;
/* If the left tree is taller, search down its right-hand edge. */
while (ld > rd) {
int child = bt_subtrees(bt, lp) - 1;
nodeptr n = bt_write_lock_child(bt, lp, child);
nodes[nnodes] = lp;
childposns[nnodes] = child;
nnodes++;
lp = n;
ld--;
}
} else {
bt->root = bt_node_addr(bt, rp);
bt->depth = rd;
/* If the right tree is taller, search down its left-hand edge. */
while (rd > ld) {
nodeptr n = bt_write_lock_child(bt, rp, 0);
nodes[nnodes] = rp;
childposns[nnodes] = 0;
nnodes++;
rp = n;
rd--;
}
}
/*
* So we now want to combine nodes lp and rp into either one or
* two plausibly-sized nodes, whichever is feasible. We have a
* joining element `sep'.
*/
lsub = (lp ? bt_subtrees(bt, lp) : 0);
rsub = (rp ? bt_subtrees(bt, rp) : 0);
if (lp && rp && lsub + rsub <= bt_max_subtrees(bt)) {
node_addr la;
/* Join the nodes into one. */
bt_xform(bt, NODE_AS_IS, 0, lp, rp, sep,
NODE_ADDR_NULL, NODE_ADDR_NULL,
NODE_JOIN, &lp, NULL, NULL);
/* Unlock the node. */
la = bt_write_unlock(bt, lp);
/* Update the child pointer in the next node up. */
if (nnodes > 0)
bt_set_child(bt, nodes[nnodes-1], childposns[nnodes-1], la);
else
bt->root = la;
} else {
node_addr la, ra;
if (!lp || !rp) {
la = NODE_ADDR_NULL;
ra = NODE_ADDR_NULL;
} else {
int lsize, rsize;
/* Re-split the nodes into two plausibly sized ones. */
lsize = lsub + rsub;
rsize = lsize / 2;
lsize -= rsize;
bt_xform(bt, NODE_AS_IS, 0, lp, rp, sep,
NODE_ADDR_NULL, NODE_ADDR_NULL,
lsize-1, &lp, &rp, &sep);
/* Unlock the nodes. */
la = bt_write_unlock(bt, lp);
ra = bt_write_unlock(bt, rp);
}
/*
* Now we have to do the addition thing: progress up the
* tree replacing a single subtree pointer with the
* la/sep/ra assembly, until no more nodes have to split as
* a result.
*/
while (nnodes-- > 0) {
nodeptr n = nodes[nnodes];
if (bt_subtrees(bt, n) == bt_max_subtrees(bt)) {
/* Split the node and carry on up. */
bt_xform(bt, NODE_ADD_ELT, childposns[nnodes],
n, NULL, sep, la, ra,
bt_min_subtrees(bt), &lp, &rp, &sep);
la = bt_write_unlock(bt, lp);
ra = bt_write_unlock(bt, rp);
} else {
bt_xform(bt, NODE_ADD_ELT, childposns[nnodes],
n, NULL, sep, la, ra,
NODE_JOIN, &n, NULL, NULL);
bt_write_unlock(bt, n);
break;
}
}
/*
* If nnodes < 0, we have just split the root and we need
* to build a new root node.
*/
if (nnodes < 0)
bt_new_root(bt, la, ra, sep);
}
/*
* Now we just need to go back up and unlock any remaining
* nodes. Also here we ensure the root points where it should.
*/
while (nnodes-- > 0) {
node_addr na;
na = bt_write_unlock(bt, nodes[nnodes]);
if (nnodes == 0)
bt->root = na;
}
if (nodessize) {
ifree(nodes);
ifree(childposns);
}
}
/*
* External interfaces to the join functionality: join and joinr
* (differing only in which B-tree structure they leave without any
* elements, and which they return the combined tree in).
*/
btree *bt_join(btree *bt1, btree *bt2)
{
nodeptr root1, root2;
int size2;
size2 = bt_count(bt2);
if (size2 > 0) {
bt_element_t sep;
if (bt1->cmp) {
/*
* The trees are ordered, so verify the ordering
* condition: ensure nothing in bt1 is greater than or
* equal to the minimum element in bt2.
*/
sep = bt_index(bt2, 0);
sep = bt_findrelpos(bt1, sep, NULL, BT_REL_GE, NULL);
if (sep)
return NULL;
}
sep = bt_delpos(bt2, 0);
root1 = bt_write_lock_root(bt1);
root2 = bt_write_lock_root(bt2);
bt_join_internal(bt1, root1, root2, sep, bt1->depth, bt2->depth);
bt2->root = NODE_ADDR_NULL;
bt2->depth = 0;
}
return bt1;
}
btree *bt_joinr(btree *bt1, btree *bt2)
{
nodeptr root1, root2;
int size1;
size1 = bt_count(bt1);
if (size1 > 0) {
bt_element_t sep;
if (bt2->cmp) {
/*
* The trees are ordered, so verify the ordering
* condition: ensure nothing in bt2 is less than or
* equal to the maximum element in bt1.
*/
sep = bt_index(bt1, size1-1);
sep = bt_findrelpos(bt2, sep, NULL, BT_REL_LE, NULL);
if (sep)
return NULL;
}
sep = bt_delpos(bt1, size1-1);
root1 = bt_write_lock_root(bt1);
root2 = bt_write_lock_root(bt2);
bt_join_internal(bt2, root1, root2, sep, bt1->depth, bt2->depth);
bt1->root = NODE_ADDR_NULL;
bt1->depth = 0;
}
return bt2;
}
/*
* Perform the healing process after a tree has been split. `rhs'
* is set if the cut edge is the one on the right.
*/
static void bt_split_heal(btree *bt, int rhs)
{
nodeptr n;
nodeptr *nodes;
int nnodes;
nodes = inewn(nodeptr, bt->depth);
nnodes = 0;
n = bt_write_lock_root(bt);
/*
* First dispense with completely trivial cases: a root node
* containing only one subtree can be thrown away instantly.
*/
while (n && bt_subtrees(bt, n) == 1) {
nodeptr n2 = bt_write_lock_child(bt, n, 0);
bt_shift_root(bt, n, bt_node_addr(bt, n2));
n = n2;
}
/*
* Now we have a plausible root node. Start going down the cut
* edge looking for undersized or minimum nodes, and arranging
* for them to be above minimum size.
*/
while (n) {
int edge, next, elt, size_e, size_n, size_total;
nodeptr ne, nn, nl, nr;
bt_element_t el;
nodes[nnodes++] = n;
if (rhs) {
edge = bt_subtrees(bt, n) - 1;
next = edge - 1;
elt = next;
} else {
edge = 0;
next = 1;
elt = edge;
}
ne = bt_write_lock_child(bt, n, edge);
if (!ne)
break;
size_e = bt_subtrees(bt, ne);
if (size_e <= bt_min_subtrees(bt)) {
nn = bt_write_lock_child(bt, n, next);
el = bt_element(bt, n, elt);
size_n = bt_subtrees(bt, nn);
if (edge < next)
nl = ne, nr = nn;
else
nl = nn, nr = ne;
size_total = size_e + size_n;
if (size_e + size_n <= bt_max_subtrees(bt)) {
/*
* Merge the edge node and its sibling together.
*/
bt_xform(bt, NODE_AS_IS, 0, nl, nr, el,
NODE_ADDR_NULL, NODE_ADDR_NULL,
NODE_JOIN, &ne, NULL, NULL);
bt_xform(bt, NODE_DEL_ELT, elt, n, NULL, NULL,
bt_node_addr(bt, ne), NODE_ADDR_NULL,
NODE_JOIN, &n, NULL, NULL);
/*
* It's possible we've just trashed the root of the
* tree, again.
*/
if (bt_subtrees(bt, n) == 1) {
bt_shift_root(bt, n, bt_node_addr(bt, ne));
nnodes--; /* and take it out of nodes[] */
}
} else {
/*
* Redistribute subtrees between the edge node and
* its sibling.
*/
int split;
size_e = (size_total + 1) / 2;
assert(size_e > bt_min_subtrees(bt));
if (next < edge)
split = size_total - size_e - 1;
else
split = size_e - 1;
bt_xform(bt, NODE_AS_IS, 0, nl, nr, el,
NODE_ADDR_NULL, NODE_ADDR_NULL,
split, &nl, &nr, &el);
bt_write_unlock(bt, nn);
bt_set_element(bt, n, elt, el);
}
}
n = ne;
}
/*
* Now we just need to go back up and unlock any remaining
* nodes.
*/
while (nnodes-- > 0)
bt_write_unlock(bt, nodes[nnodes]);
ifree(nodes);
}
/*
* Split a tree by numeric position. The new tree returned is the
* one on the right; the original tree contains the stuff on the
* left.
*/
static btree *bt_split_internal(btree *bt1, int index)
{
btree *bt2;
nodeptr *lnodes, *rnodes;
nodeptr n1, n2, n;
int nnodes, child;
bt2 = bt_new(bt1->cmp, bt1->copy, bt1->freeelt, bt1->propsize,
bt1->propalign, bt1->propmake, bt1->propmerge,
bt1->userstate, bt1->mindegree);
bt2->depth = bt1->depth;
lnodes = inewn(nodeptr, bt1->depth);
rnodes = inewn(nodeptr, bt2->depth);
nnodes = 0;
n1 = bt_write_lock_root(bt1);
while (n1) {
child = bt_lookup_pos(bt1, n1, &index, NULL);
n = bt_write_lock_child(bt1, n1, child);
bt_xform(bt1, NODE_ADD_ELT, child, n1, NULL, NULL,
bt_node_addr(bt1, n), NODE_ADDR_NULL,
child, &n1, &n2, NULL);
lnodes[nnodes] = n1;
rnodes[nnodes] = n2;
if (nnodes > 0)
bt_set_child(bt2, rnodes[nnodes-1], 0, bt_node_addr(bt2, n2));
else
bt2->root = bt_node_addr(bt2, n2);
nnodes++;
n1 = n;
}
/*
* Now we go back up and unlock all the nodes. At this point we
* don't mess with user properties, because there's the danger
* of a node containing no subtrees _or_ elements and hence us
* having to invent a notation for an empty property. We're
* going to make a second healing pass in a moment anyway,
* which will sort all that out for us.
*/
while (nnodes-- > 0) {
bt_write_unlock_internal(bt1, lnodes[nnodes], FALSE);
bt_write_unlock_internal(bt2, rnodes[nnodes], FALSE);
}
/*
* Then we make a healing pass down each side of the tree.
*/
bt_split_heal(bt1, TRUE);
bt_split_heal(bt2, FALSE);
ifree(lnodes);
ifree(rnodes);
return bt2;
}
/*
* Split a tree at a numeric index.
*/
btree *bt_splitpos(btree *bt, int index, int before)
{
btree *ret;
node_addr na;
int count, nd;
nodeptr n;
n = bt_read_lock_root(bt);
count = (n ? bt_node_count(bt, n) : 0);
bt_read_unlock(bt, n);
if (index < 0 || index > count)
return NULL;
ret = bt_split_internal(bt, index);
if (before) {
na = bt->root;
bt->root = ret->root;
ret->root = na;
nd = bt->depth;
bt->depth = ret->depth;
ret->depth = nd;
}
return ret;
}
/*
* Split a tree at a position dictated by the sorting order.
*/
btree *bt_split(btree *bt, bt_element_t element, cmpfn_t cmp, int rel)
{
int before, index;
assert(rel != BT_REL_EQ); /* has to be an inequality */
if (rel == BT_REL_GT || rel == BT_REL_GE) {
before = TRUE;
rel = (rel == BT_REL_GT ? BT_REL_LE : BT_REL_LT);
} else {
before = FALSE;
}
if (!bt_findrelpos(bt, element, cmp, rel, &index))
index = -1;
return bt_splitpos(bt, index+1, before);
}
#ifdef TEST
#define TEST_DEGREE 4
#define BT_COPY bt_clone
#define MAXTREESIZE 10000
#define MAXLOCKS 100
int errors;
/*
* Error reporting function.
*/
void error(char *fmt, ...) {
va_list ap;
fprintf(stderr, "ERROR: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
errors++;
}
/*
* See if a tree has a 2-element root node.
*/
static int bt_tworoot(btree *bt)
{
nodeptr n;
int i;
n = bt_read_lock_root(bt);
i = bt_subtrees(bt, n);
bt_read_unlock(bt, n);
return (i == 2 ? TRUE : FALSE);
}
/*
* Physically copy an entire B-tree. (NB this appears as a test
* routine rather than a production one, since reference counting
* and bt_clone() provide a better way to do this for real code. If
* anyone really needs a genuine physical copy for anything other
* than testing reasons, I suppose they could always lift this into
* the admin section above.)
*/
static nodeptr bt_copy_node(btree *bt, nodeptr n)
{
int i, children;
nodeptr ret;
children = bt_subtrees(bt, n);
ret = bt_new_node(bt, children);
for (i = 0; i < children; i++) {
nodeptr n2 = bt_read_lock_child(bt, n, i);
nodeptr n3;
if (n2) {
n3 = bt_copy_node(bt, n2);
bt_set_child(bt, ret, i, bt_write_unlock(bt, n3));
} else {
bt_set_child(bt, ret, i, NODE_ADDR_NULL);
}
bt_read_unlock(bt, n2);
if (i < children-1) {
bt_element_t e = bt_element(bt, n, i);
if (bt->copy)
e = bt->copy(bt->userstate, e);
bt_set_element(bt, ret, i, e);
}
}
return ret;
}
btree *bt_copy(btree *bt)
{
nodeptr n;
btree *bt2;
bt2 = bt_new(bt->cmp, bt->copy, bt->freeelt, bt->propsize, bt->propalign,
bt->propmake, bt->propmerge, bt->userstate, bt->mindegree);
bt2->depth = bt->depth;
n = bt_read_lock_root(bt);
if (n)
bt2->root = bt_write_unlock(bt2, bt_copy_node(bt, n));
bt_read_unlock(bt, n);
return bt2;
}
/*
* This function is intended to be called from gdb when debugging
* things.
*/
void bt_dump_nodes(btree *bt, ...)
{
int i, children;
va_list ap;
nodeptr n;
va_start(ap, bt);
while (1) {
n = va_arg(ap, nodeptr);
if (!n)
break;
printf("%p [%d]:", n, n[bt->maxdegree*2+1].i);
children = bt_subtrees(bt, n);
for (i = 0; i < children; i++) {
printf(" %p", bt_child(bt, n, i).p);
if (i < children-1)
printf(" %s", (char *)bt_element(bt, n, i));
}
printf("\n");
}
va_end(ap);
}
/*
* Verify a tree against an array. Checks that:
*
* - every node has a valid number of subtrees
* - subtrees are either all present (internal node) or all absent
* (leaf)
* - elements are all present
* - every leaf is at exactly the depth claimed by the tree
* - the tree represents the correct list of elements in the
* correct order. (This also tests the ordering constraint,
* assuming the array is correctly constructed.)
*/
void verifynode(btree *bt, nodeptr n, bt_element_t *array, int *arraypos,
int depth)
{
int subtrees, min, max, i, before, after, count;
/* Check the subtree count. The root can have as few as 2 subtrees. */
subtrees = bt_subtrees(bt, n);
max = bt_max_subtrees(bt);
min = (depth == 1) ? 2 : bt_min_subtrees(bt);
if (subtrees > max)
error("node %p has too many subtrees (%d > %d)", n, subtrees, max);
if (subtrees < min)
error("node %p has too few subtrees (%d < %d)", n, subtrees, min);
/* Check that subtrees are present or absent as required. */
for (i = 0; i < subtrees; i++) {
node_addr child = bt_child(bt, n, i);
if (depth == bt->depth && child.p != NULL)
error("leaf node %p child %d is %p not NULL\n", n, i, child);
if (depth != bt->depth && child.p == NULL)
error("non-leaf node %p child %d is NULL\n", n, i);
}
/* Check that elements are all present. */
for (i = 0; i < subtrees-1; i++) {
bt_element_t elt = bt_element(bt, n, i);
if (elt == NULL)
error("node %p element %d is NULL\n", n, i);
}
before = *arraypos;
/* Now verify the subtrees, and simultaneously check the ordering. */
for (i = 0; i < subtrees; i++) {
if (depth < bt->depth) {
nodeptr child = bt_read_lock_child(bt, n, i);
verifynode(bt, child, array, arraypos, depth+1);
bt_read_unlock(bt, child);
}
if (i < subtrees-1) {
bt_element_t elt = bt_element(bt, n, i);
if (array[*arraypos] != elt) {
error("node %p element %d is \"%s\", but array[%d]=\"%s\"",
n, i, elt, *arraypos, array[*arraypos]);
}
(*arraypos)++;
}
}
after = *arraypos;
/* Check the node count. */
count = bt_node_count(bt, n);
if (count != after - before)
error("node %p count is %d, should be %d", n, count, after - before);
/*
* Check the user properties.
*/
{
nodecomponent *prop;
int i;
int max = 0, total = 0;
prop = n + bt->maxdegree * 2 + 2;
for (i = before; i < after; i++) {
int c = (unsigned char)*(char *)array[i];
if (max < c) max = c;
total += c;
}
if (prop[0].i != total)
error("node %p total prop is %d, should be %d", n,
prop[0].i, total);
if (prop[1].i != max)
error("node %p max prop is %d, should be %d", n,
prop[1].i, max);
}
}
void verifytree(btree *bt, bt_element_t *array, int arraylen)
{
nodeptr n;
int i = 0;
n = bt_read_lock_root(bt);
if (n) {
verifynode(bt, n, array, &i, 1);
bt_read_unlock(bt, n);
} else {
if (bt->depth != 0) {
error("tree has null root but depth is %d not zero", bt->depth);
}
}
if (i != arraylen)
error("tree contains %d elements, array contains %d",
i, arraylen);
testlock(-1, 0, NULL);
}
int mycmp(void *state, void *av, void *bv) {
char const *a = (char const *)av;
char const *b = (char const *)bv;
return strcmp(a, b);
}
static void set_invalid_property(void *propv)
{
int *prop = (int *)propv;
prop[0] = prop[1] = -1;
}
void mypropmake(void *state, void *av, void *destv)
{
char const *a = (char const *)av;
int *dest = (int *)destv;
dest[0] = dest[1] = (unsigned char)*a;
}
void mypropmerge(void *state, void *s1v, void *s2v, void *destv)
{
int *s1 = (int *)s1v;
int *s2 = (int *)s2v;
int *dest = (int *)destv;
if (!s1v && !s2v) {
/* Special `destroy' case. */
set_invalid_property(destv);
return;
}
assert(s2[0] >= 0 && s2[1] >= 0);
assert(s1 == NULL || (s1[0] >= 0 && s1[1] >= 0));
dest[0] = s2[0] + (s1 ? s1[0] : 0);
dest[1] = (s1 && s1[1] > s2[1] ? s1[1] : s2[1]);
}
void array_addpos(bt_element_t *array, int *arraylen, bt_element_t e, int i)
{
bt_element_t e2;
int len = *arraylen;
assert(len < MAXTREESIZE);
while (i < len) {
e2 = array[i];
array[i] = e;
e = e2;
i++;
}
array[len] = e;
*arraylen = len+1;
}
void array_add(bt_element_t *array, int *arraylen, bt_element_t e)
{
int i;
int len = *arraylen;
for (i = 0; i < len; i++)
if (mycmp(NULL, array[i], e) >= 0)
break;
assert(i == len || mycmp(NULL, array[i], e) != 0);
array_addpos(array, arraylen, e, i);
}
void array_delpos(bt_element_t *array, int *arraylen, int i)
{
int len = *arraylen;
while (i < len-1) {
array[i] = array[i+1];
i++;
}
*arraylen = len-1;
}
bt_element_t array_del(bt_element_t *array, int *arraylen, bt_element_t e)
{
int i;
int len = *arraylen;
bt_element_t ret;
for (i = 0; i < len; i++)
if (mycmp(NULL, array[i], e) >= 0)
break;
if (i < len && mycmp(NULL, array[i], e) == 0) {
ret = array[i];
array_delpos(array, arraylen, i);
} else
ret = NULL;
return ret;
}
/* A sample data set and test utility. Designed for pseudo-randomness,
* and yet repeatability. */
/*
* This random number generator uses the `portable implementation'
* given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
* change it if not.
*/
int randomnumber(unsigned *seed) {
*seed *= 1103515245;
*seed += 12345;
return ((*seed) / 65536) % 32768;
}
#define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
char *strings[] = {
"0", "2", "3", "I", "K", "d", "H", "J", "Q", "N", "n", "q", "j", "i",
"7", "G", "F", "D", "b", "x", "g", "B", "e", "v", "V", "T", "f", "E",
"S", "8", "A", "k", "X", "p", "C", "R", "a", "o", "r", "O", "Z", "u",
"6", "1", "w", "L", "P", "M", "c", "U", "h", "9", "t", "5", "W", "Y",
"m", "s", "l", "4",
};
#define NSTR lenof(strings)
void findtest(btree *tree, bt_element_t *array, int arraylen)
{
static const int rels[] = {
BT_REL_EQ, BT_REL_GE, BT_REL_LE, BT_REL_LT, BT_REL_GT
};
static const char *const relnames[] = {
"EQ", "GE", "LE", "LT", "GT"
};
int i, j, rel, index;
char *p, *ret, *realret, *realret2;
int lo, hi, mid, c;
for (i = 0; i < (int)NSTR; i++) {
p = strings[i];
for (j = 0; j < (int)(sizeof(rels)/sizeof(*rels)); j++) {
rel = rels[j];
lo = 0; hi = arraylen-1;
while (lo <= hi) {
mid = (lo + hi) / 2;
c = strcmp(p, array[mid]);
if (c < 0)
hi = mid-1;
else if (c > 0)
lo = mid+1;
else
break;
}
if (c == 0) {
if (rel == BT_REL_LT)
ret = (mid > 0 ? array[--mid] : NULL);
else if (rel == BT_REL_GT)
ret = (mid < arraylen-1 ? array[++mid] : NULL);
else
ret = array[mid];
} else {
assert(lo == hi+1);
if (rel == BT_REL_LT || rel == BT_REL_LE) {
mid = hi;
ret = (hi >= 0 ? array[hi] : NULL);
} else if (rel == BT_REL_GT || rel == BT_REL_GE) {
mid = lo;
ret = (lo < arraylen ? array[lo] : NULL);
} else
ret = NULL;
}
realret = bt_findrelpos(tree, p, NULL, rel, &index);
testlock(-1, 0, NULL);
if (realret != ret) {
error("find(\"%s\",%s) gave %s should be %s",
p, relnames[j], realret, ret);
}
if (realret && index != mid) {
error("find(\"%s\",%s) gave %d should be %d",
p, relnames[j], index, mid);
}
if (realret && rel == BT_REL_EQ) {
realret2 = bt_index(tree, index);
if (realret2 != realret) {
error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
p, relnames[j], realret, index, index, realret2);
}
}
}
}
realret = bt_findrelpos(tree, NULL, NULL, BT_REL_GT, &index);
testlock(-1, 0, NULL);
if (arraylen && (realret != array[0] || index != 0)) {
error("find(NULL,GT) gave %s(%d) should be %s(0)",
realret, index, array[0]);
} else if (!arraylen && (realret != NULL)) {
error("find(NULL,GT) gave %s(%d) should be NULL",
realret, index);
}
realret = bt_findrelpos(tree, NULL, NULL, BT_REL_LT, &index);
testlock(-1, 0, NULL);
if (arraylen && (realret != array[arraylen-1] || index != arraylen-1)) {
error("find(NULL,LT) gave %s(%d) should be %s(0)",
realret, index, array[arraylen-1]);
} else if (!arraylen && (realret != NULL)) {
error("find(NULL,LT) gave %s(%d) should be NULL",
realret, index);
}
}
void splittest(btree *tree, bt_element_t *array, int arraylen)
{
int i;
btree *tree3, *tree4;
for (i = 0; i <= arraylen; i++) {
printf("splittest: %d\n", i);
tree3 = BT_COPY(tree);
testlock(-1, 0, NULL);
tree4 = bt_splitpos(tree3, i, 0);
testlock(-1, 0, NULL);
verifytree(tree3, array, i);
verifytree(tree4, array+i, arraylen-i);
bt_join(tree3, tree4);
testlock(-1, 0, NULL);
verifytree(tree4, NULL, 0);
bt_free(tree4); /* left empty by join */
testlock(-1, 0, NULL);
verifytree(tree3, array, arraylen);
bt_free(tree3);
testlock(-1, 0, NULL);
}
}
/*
* Called to track read and write locks on nodes.
*/
void testlock(int write, int set, nodeptr n)
{
static nodeptr readlocks[MAXLOCKS], writelocks[MAXLOCKS];
static int nreadlocks = 0, nwritelocks = 0;
int i, rp, wp;
if (write == -1) {
/* Called after an operation to ensure all locks are unlocked. */
if (nreadlocks != 0 || nwritelocks != 0)
error("at least one left-behind lock exists!");
return;
}
/* Locking NULL does nothing. Unlocking it is an error. */
if (n == NULL) {
if (!set)
error("attempting to %s-unlock NULL", write ? "write" : "read");
return;
}
assert(nreadlocks < MAXLOCKS && nwritelocks < MAXLOCKS);
/* First look for the node in both lock lists. */
rp = wp = -1;
for (i = 0; i < nreadlocks; i++)
if (readlocks[i] == n)
rp = i;
for (i = 0; i < nwritelocks; i++)
if (writelocks[i] == n)
wp = i;
/* Now diverge based on what we're supposed to be up to. */
if (set) {
/* Setting a lock. Should not already be locked in either list. */
if (rp != -1 || wp != -1) {
error("attempt to %s-lock node %p, already %s-locked",
(write ? "write" : "read"), n, (rp==-1 ? "write" : "read"));
}
if (write)
writelocks[nwritelocks++] = n;
else
readlocks[nreadlocks++] = n;
} else {
/* Clearing a lock. Should exist in exactly the correct list. */
if (write && rp != -1)
error("attempt to write-unlock node %p which is read-locked", n);
if (!write && wp != -1)
error("attempt to read-unlock node %p which is write-locked", n);
if (wp != -1) {
nwritelocks--;
for (i = wp; i < nwritelocks; i++)
writelocks[i] = writelocks[i+1];
}
if (rp != -1) {
nreadlocks--;
for (i = rp; i < nreadlocks; i++)
readlocks[i] = readlocks[i+1];
}
}
}
int main(void) {
int in[NSTR];
int i, j, k;
int tworoot, tmplen;
unsigned seed = 0;
bt_element_t *array;
int arraylen;
bt_element_t ret, ret2, item;
btree *tree, *tree2, *tree3, *tree4;
setvbuf(stdout, NULL, _IOLBF, 0);
setvbuf(stderr, NULL, _IOLBF, 0);
errors = 0;
for (i = 0; i < (int)NSTR; i++) in[i] = 0;
array = newn(bt_element_t, MAXTREESIZE);
arraylen = 0;
tree = bt_new(mycmp, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
verifytree(tree, array, arraylen);
for (i = 0; i < 10000; i++) {
j = randomnumber(&seed);
j %= NSTR;
printf("trial: %d\n", i);
if (in[j]) {
printf("deleting %s (%d)\n", strings[j], j);
ret2 = array_del(array, &arraylen, strings[j]);
ret = bt_del(tree, strings[j]);
testlock(-1, 0, NULL);
assert((bt_element_t)strings[j] == ret && ret == ret2);
verifytree(tree, array, arraylen);
in[j] = 0;
} else {
printf("adding %s (%d)\n", strings[j], j);
array_add(array, &arraylen, strings[j]);
ret = bt_add(tree, strings[j]);
testlock(-1, 0, NULL);
assert(strings[j] == ret);
verifytree(tree, array, arraylen);
in[j] = 1;
}
/* disptree(tree); */
findtest(tree, array, arraylen);
}
while (arraylen > 0) {
j = randomnumber(&seed);
j %= arraylen;
item = array[j];
ret2 = array_del(array, &arraylen, item);
ret = bt_del(tree, item);
testlock(-1, 0, NULL);
assert(ret2 == ret);
verifytree(tree, array, arraylen);
}
bt_free(tree);
testlock(-1, 0, NULL);
/*
* Now try an unsorted tree. We don't really need to test
* delpos because we know del is based on it, so it's already
* been tested in the above sorted-tree code; but for
* completeness we'll use it to tear down our unsorted tree
* once we've built it.
*/
tree = bt_new(NULL, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
verifytree(tree, array, arraylen);
for (i = 0; i < 1000; i++) {
printf("trial: %d\n", i);
j = randomnumber(&seed);
j %= NSTR;
k = randomnumber(&seed);
k %= bt_count(tree)+1;
testlock(-1, 0, NULL);
printf("adding string %s at index %d\n", strings[j], k);
array_addpos(array, &arraylen, strings[j], k);
bt_addpos(tree, strings[j], k);
testlock(-1, 0, NULL);
verifytree(tree, array, arraylen);
}
/*
* While we have this tree in its full form, we'll take a copy
* of it to use in split and join testing.
*/
tree2 = BT_COPY(tree);
testlock(-1, 0, NULL);
verifytree(tree2, array, arraylen);/* check the copy is accurate */
/*
* Split tests. Split the tree at every possible point and
* check the resulting subtrees.
*/
tworoot = bt_tworoot(tree2); /* see if it has a 2-root */
testlock(-1, 0, NULL);
splittest(tree2, array, arraylen);
/*
* Now do the split test again, but on a tree that has a 2-root
* (if the previous one didn't) or doesn't (if the previous one
* did).
*/
tmplen = arraylen;
while (bt_tworoot(tree2) == tworoot) {
bt_delpos(tree2, --tmplen);
testlock(-1, 0, NULL);
}
printf("now trying splits on second tree\n");
splittest(tree2, array, tmplen);
bt_free(tree2);
testlock(-1, 0, NULL);
/*
* Back to the main testing of uncounted trees.
*/
while (bt_count(tree) > 0) {
printf("cleanup: tree size %d\n", bt_count(tree));
j = randomnumber(&seed);
j %= bt_count(tree);
printf("deleting string %s from index %d\n", (char *)array[j], j);
ret = bt_delpos(tree, j);
testlock(-1, 0, NULL);
assert((bt_element_t)array[j] == ret);
array_delpos(array, &arraylen, j);
verifytree(tree, array, arraylen);
}
bt_free(tree);
testlock(-1, 0, NULL);
/*
* Finally, do some testing on split/join on _sorted_ trees. At
* the same time, we'll be testing split on very small trees.
*/
tree = bt_new(mycmp, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
arraylen = 0;
for (i = 0; i < 16; i++) {
array_add(array, &arraylen, strings[i]);
ret = bt_add(tree, strings[i]);
testlock(-1, 0, NULL);
assert(strings[i] == ret);
verifytree(tree, array, arraylen);
tree2 = BT_COPY(tree);
splittest(tree2, array, arraylen);
testlock(-1, 0, NULL);
bt_free(tree2);
testlock(-1, 0, NULL);
}
bt_free(tree);
testlock(-1, 0, NULL);
/*
* Test silly cases of join: join(emptytree, emptytree), and
* also ensure join correctly spots when sorted trees fail the
* ordering constraint.
*/
tree = bt_new(mycmp, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
tree2 = bt_new(mycmp, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
tree3 = bt_new(mycmp, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
tree4 = bt_new(mycmp, NULL, NULL, 2*sizeof(int), alignof(int),
mypropmake, mypropmerge, NULL, TEST_DEGREE);
assert(mycmp(NULL, strings[0], strings[1]) < 0); /* just in case :-) */
bt_add(tree2, strings[1]);
testlock(-1, 0, NULL);
bt_add(tree4, strings[0]);
testlock(-1, 0, NULL);
array[0] = strings[0];
array[1] = strings[1];
verifytree(tree, array, 0);
verifytree(tree2, array+1, 1);
verifytree(tree3, array, 0);
verifytree(tree4, array, 1);
/*
* So:
* - join(tree,tree3) should leave both tree and tree3 unchanged.
* - joinr(tree,tree2) should leave both tree and tree2 unchanged.
* - join(tree4,tree3) should leave both tree3 and tree4 unchanged.
* - join(tree, tree2) should move the element from tree2 to tree.
* - joinr(tree4, tree3) should move the element from tree4 to tree3.
* - join(tree,tree3) should return NULL and leave both unchanged.
* - join(tree3,tree) should work and create a bigger tree in tree3.
*/
assert(tree == bt_join(tree, tree3));
testlock(-1, 0, NULL);
verifytree(tree, array, 0);
verifytree(tree3, array, 0);
assert(tree2 == bt_joinr(tree, tree2));
testlock(-1, 0, NULL);
verifytree(tree, array, 0);
verifytree(tree2, array+1, 1);
assert(tree4 == bt_join(tree4, tree3));
testlock(-1, 0, NULL);
verifytree(tree3, array, 0);
verifytree(tree4, array, 1);
assert(tree == bt_join(tree, tree2));
testlock(-1, 0, NULL);
verifytree(tree, array+1, 1);
verifytree(tree2, array, 0);
assert(tree3 == bt_joinr(tree4, tree3));
testlock(-1, 0, NULL);
verifytree(tree3, array, 1);
verifytree(tree4, array, 0);
assert(NULL == bt_join(tree, tree3));
testlock(-1, 0, NULL);
verifytree(tree, array+1, 1);
verifytree(tree3, array, 1);
assert(tree3 == bt_join(tree3, tree));
testlock(-1, 0, NULL);
verifytree(tree3, array, 2);
verifytree(tree, array, 0);
bt_free(tree);
testlock(-1, 0, NULL);
bt_free(tree2);
testlock(-1, 0, NULL);
bt_free(tree3);
testlock(-1, 0, NULL);
bt_free(tree4);
testlock(-1, 0, NULL);
sfree(array);
if (errors)
fprintf(stderr, "%d errors!\n", errors);
return (errors != 0 ? 1 : 0);
}
#endif
|