File: psycho_2.c

package info (click to toggle)
twolame 0.3.12-1
  • links: PTS
  • area: main
  • in suites: lenny, squeeze
  • size: 2,436 kB
  • ctags: 1,064
  • sloc: sh: 9,013; ansic: 8,868; xml: 510; makefile: 135
file content (540 lines) | stat: -rw-r--r-- 15,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 *	TwoLAME: an optimized MPEG Audio Layer Two encoder
 *
 *	Copyright (C) 2001-2004 Michael Cheng
 *	Copyright (C) 2004-2006 The TwoLAME Project
 *
 *	This library is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU Lesser General Public
 *	License as published by the Free Software Foundation; either
 *	version 2.1 of the License, or (at your option) any later version.
 *
 *	This library is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *	Lesser General Public License for more details.
 *
 *	You should have received a copy of the GNU Lesser General Public
 *	License along with this library; if not, write to the Free Software
 *	Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *  $Id: psycho_2.c 156 2007-03-20 23:57:35Z nhumfrey $
 *
 */


#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#include "twolame.h"
#include "common.h"
#include "mem.h"
#include "fft.h"
#include "psycho_2.h"

/* The static variables "r", "phi_sav", "new", "old" and "oldest" have	  */
/* to be remembered for the unpredictability measure.  For "r" and		  */
/* "phi_sav", the first index from the left is the channel select and	  */
/* the second index is the "age" of the data.							  */


/* The following static variables are constants.						   */

static const FLOAT nmt = 5.5;

static const FLOAT crit_band[27] = { 0, 100, 200, 300, 400, 510, 630, 770,
  920, 1080, 1270, 1480, 1720, 2000, 2320, 2700,
  3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000,
  15500, 25000, 30000
};

static const FLOAT bmax[27] = { 20.0, 20.0, 20.0, 20.0, 20.0, 17.0, 15.0,
  10.0, 7.0, 4.4, 4.5, 4.5, 4.5, 4.5,
  4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5,
  4.5, 4.5, 4.5, 3.5, 3.5, 3.5
};

static void psycho_2_read_absthr (absthr, table)
	 FLOAT *absthr;
	 int table;
{
  int j;
#include "psycho_2_absthr.h"

  if ((table < 0) || (table > 3)) {
	printf ("internal error: wrong table number");
	return;
  }

  for (j = 0; j < HBLKSIZE; j++) {
	absthr[j] = absthr_table[table][j];
  }
  return;
}

/********************************
 * init psycho model 2
 ********************************/
psycho_2_mem *psycho_2_init (twolame_options *glopts, int sfreq)
{
  psycho_2_mem *mem;
  FLOAT *cbval, *rnorm;
  FLOAT *window;
  FLOAT *ath;
  int *numlines;
  int *partition;
  FCB *s;
  FLOAT *tmn;

  int i, j, itemp2;
  FLOAT freq_mult;
  FLOAT temp1, ftemp2, temp3;
  FLOAT bval_lo, *fthr;

  int sfreq_idx;

  {
	mem = (psycho_2_mem *)TWOLAME_MALLOC(sizeof(psycho_2_mem));
	if (!mem) return NULL;
	
	mem->tmn = (FLOAT *) TWOLAME_MALLOC(sizeof (DCB));
	mem->s = (FCB *) TWOLAME_MALLOC(sizeof (FCBCB));
	mem->lthr = (FHBLK *) TWOLAME_MALLOC(sizeof (F2HBLK));
	mem->r = (F2HBLK *) TWOLAME_MALLOC(sizeof (F22HBLK));
	mem->phi_sav = (F2HBLK *) TWOLAME_MALLOC(sizeof (F22HBLK));

	//static int new = 0, old = 1, oldest = 0;
	mem->new=0;
	mem->old=1;
	mem->oldest=0;
	
	mem->flush = (int) (384 * 3.0 / 2.0); 
	mem->syncsize = 1056;
	mem->sync_flush = mem->syncsize - mem->flush;
  }

  {
	cbval = mem->cbval;
	rnorm = mem->rnorm;
	window = mem->window;
	ath = mem->ath;
	numlines = mem->numlines;
	partition = mem->numlines;
	s = mem->s;
	tmn = mem->tmn;
	fthr = mem->fthr;
  }

  switch (sfreq) {
  case 32000:
  case 16000:
	sfreq_idx = 0;
	break;
  case 44100:
  case 22050:
	sfreq_idx = 1;
	break;
  case 48000:
  case 24000:
	sfreq_idx = 2;
	break;
  default:
	fprintf (stderr, "error, invalid sampling frequency: %d Hz\n", sfreq);
	return NULL;
  }
  fprintf (stderr, "absthr[][] sampling frequency index: %d\n", sfreq_idx);
  psycho_2_read_absthr (mem->absthr, sfreq_idx);


  /* calculate HANN window coefficients */
  /*   for(i=0;i<BLKSIZE;i++)window[i]=0.5*(1-cos(2.0*PI*i/(BLKSIZE-1.0))); */
  for (i = 0; i < BLKSIZE; i++)
	window[i] = 0.5 * (1 - cos (2.0 * PI * (i - 0.5) / BLKSIZE));
  /* reset states used in unpredictability measure */
  for (i = 0; i < HBLKSIZE; i++) {
	mem->r[0][0][i] = mem->r[1][0][i] = mem->r[0][1][i] = mem->r[1][1][i] = 0;
	mem->phi_sav[0][0][i] = mem->phi_sav[1][0][i] = 0;
	mem->phi_sav[0][1][i] = mem->phi_sav[1][1][i] = 0;
	mem->lthr[0][i] = 60802371420160.0;
	mem->lthr[1][i] = 60802371420160.0;
  }
  /*****************************************************************************
   * Initialization: Compute the following constants for use later			   *
   *	partition[HBLKSIZE] = the partition number associated with each		   *
   *						  frequency line								   *
   *	cbval[CBANDS]		= the center (average) bark value of each		   *
   *						  partition										   *
   *	numlines[CBANDS]	= the number of frequency lines in each partition  *
   *	tmn[CBANDS]			= tone masking noise							   *
   *****************************************************************************/
  /* compute fft frequency multiplicand */
  freq_mult = (FLOAT)sfreq / (FLOAT)BLKSIZE;

  /* calculate fft frequency, then bval of each line (use fthr[] as tmp storage) */
  for (i = 0; i < HBLKSIZE; i++) {
	temp1 = i * freq_mult;
	j = 1;
	while (temp1 > crit_band[j])
	  j++;
	fthr[i] =
	  j - 1 + (temp1 - crit_band[j - 1]) / (crit_band[j] - crit_band[j - 1]);
  }
  partition[0] = 0;
  /* temp2 is the counter of the number of frequency lines in each partition */
  itemp2 = 1;
  cbval[0] = fthr[0];
  bval_lo = fthr[0];
  for (i = 1; i < HBLKSIZE; i++) {
	if ((fthr[i] - bval_lo) > 0.33) {
	  partition[i] = partition[i - 1] + 1;
	  cbval[partition[i - 1]] = cbval[partition[i - 1]] / itemp2;
	  cbval[partition[i]] = fthr[i];
	  bval_lo = fthr[i];
	  numlines[partition[i - 1]] = itemp2;
	  itemp2 = 1;
	} else {
	  partition[i] = partition[i - 1];
	  cbval[partition[i]] += fthr[i];
	  itemp2++;
	}
  }
  numlines[partition[i - 1]] = itemp2;
  cbval[partition[i - 1]] = cbval[partition[i - 1]] / itemp2;

  /************************************************************************
   * Now compute the spreading function, s[j][i], the value of the spread-*
   * ing function, centered at band j, for band i, store for later use	  *
   ************************************************************************/
  for (j = 0; j < CBANDS; j++) {
	for (i = 0; i < CBANDS; i++) {
	  temp1 = (cbval[i] - cbval[j]) * 1.05;
	  if (temp1 >= 0.5 && temp1 <= 2.5) {
	ftemp2 = temp1 - 0.5;
	ftemp2 = 8.0 * (ftemp2 * ftemp2 - 2.0 * ftemp2);
	  } else
	ftemp2 = 0.0;
	  temp1 += 0.474;
	  temp3 =
	15.811389 + 7.5 * temp1 -
	17.5 * sqrt ((FLOAT) (1.0 + temp1 * temp1));
	  if (temp3 <= -100)
	s[i][j] = 0;
	  else {
	temp3 = (ftemp2 + temp3) * LN_TO_LOG10;
	s[i][j] = exp (temp3);
	  }
	}
  }

  /* Calculate Tone Masking Noise values */
  for (j = 0; j < CBANDS; j++) {
	temp1 = 15.5 + cbval[j];
	tmn[j] = (temp1 > 24.5) ? temp1 : 24.5;
	/* Calculate normalization factors for the net spreading functions */
	rnorm[j] = 0;
	for (i = 0; i < CBANDS; i++) {
	  rnorm[j] += s[j][i];
	}
  }

  if (glopts->verbosity > 5){
	/* Dump All the Values to STDOUT and exit */
	int wlow, whigh=0;
	fprintf(stdout,"psy model 2 init\n");
	fprintf(stdout,"index \tnlines \twlow \twhigh \tbval \tminval \ttmn\n");
	for (i=0;i<CBANDS;i++) {
	  wlow = whigh+1;
	  whigh = wlow + numlines[i] - 1;
	  fprintf(stdout,"%i \t%i \t%i \t%i \t%5.2f \t%4.2f \t%4.2f\n",i+1, numlines[i],wlow, whigh, cbval[i],bmax[(int)(cbval[i]+0.5)],tmn[i]);
	}
	exit(0);
  }

  return(mem);
}

void psycho_2 (twolame_options *glopts, short int buffer[2][1152],
	  short int savebuf[2][1056],
		FLOAT smr[2][32])
{
  psycho_2_mem *mem;
  unsigned int i, j, k, ch;
  int new, old, oldest;
  FLOAT r_prime, phi_prime;
  FLOAT minthres, sum_energy;
  FLOAT tb, temp1, temp2, temp3;  
  FLOAT *grouped_c, *grouped_e;
  FLOAT *nb, *cb, *ecb, *bc;
  FLOAT *cbval, *rnorm;
  FLOAT *wsamp_r, *phi, *energy, *window;
  FLOAT *ath, *thr, *c;
  FLOAT *fthr;

  FLOAT *snrtmp[2];
  int *numlines;
  int *partition;
  FLOAT *tmn;
  FCB *s;
  FHBLK *lthr;
  F2HBLK *r, *phi_sav;
  FLOAT *absthr;
  
  int nch = glopts->num_channels_out;
  int sfreq = glopts->samplerate_out;


  if (!glopts->p2mem) {
	glopts->p2mem = psycho_2_init (glopts, sfreq);
  }
  mem = glopts->p2mem;
  {
	grouped_c = mem->grouped_c;
	grouped_e = mem->grouped_e;
	nb = mem->nb;
	cb = mem->cb;
	ecb = mem->ecb;
	bc = mem->bc;
	rnorm = mem->rnorm;
	cbval = mem->cbval;
	wsamp_r = mem->wsamp_r;
	phi = mem->phi;
	energy = mem->energy;
	window = mem->window;
	ath = mem->ath;
	thr = mem->thr;
	c = mem->c;

	snrtmp[0] = mem->snrtmp[0];
	snrtmp[1] = mem->snrtmp[1];

	numlines = mem->numlines;
	partition = mem->partition;
	tmn = mem->tmn;
	s = mem->s;
	lthr = mem->lthr;
	r = mem->r;
	phi_sav = mem->phi_sav;	   
	fthr = mem->fthr;
	absthr = mem->absthr;
  }


  for (ch=0; ch < nch; ch++) {
	for (i = 0; i < 2; i++) {
	  /*****************************************************************************
	   * Net offset is 480 samples (1056-576) for layer 2; this is because one must*
	   * stagger input data by 256 samples to synchronize psychoacoustic model with*
	   * filter bank outputs, then stagger so that center of 1024 FFT window lines *
	   * up with center of 576 "new" audio samples.								   *
	   
		   flush = 384*3.0/2.0;	 = 576
		   syncsize = 1056;
		   sync_flush = syncsize - flush;	480
		   BLKSIZE = 1024
	   *****************************************************************************/
	  {
	short int *bufferp = buffer[ch];
	for (j = 0; j < 480; j++) {
	  savebuf[ch][j] = savebuf[ch][j + mem->flush];
	  wsamp_r[j] = window[j] * ((FLOAT) savebuf[ch][j]);
	}
	for (; j < 1024; j++) {
	  savebuf[ch][j] = *bufferp++;
	  wsamp_r[j] = window[j] * ((FLOAT) savebuf[ch][j]);
	}
	for (; j < 1056; j++)
	  savebuf[ch][j] = *bufferp++;
	  }
	  
	  /**Compute FFT****************************************************************/
	  psycho_2_fft (wsamp_r, energy, phi);
	  /*****************************************************************************
	   * calculate the unpredictability measure, given energy[f] and phi[f]		   *
	   *****************************************************************************/
	  /*only update data "age" pointers after you are done with both channels	   */
	  /*for layer 1 computations, for the layer 2 FLOAT computations, the pointers */
	  /*are reset automatically on the second pass								   */
	  {
	if (mem->new == 0) {
	  mem->new = 1;
	  mem->oldest = 1;
	} else {
	  mem->new = 0;
	  mem->oldest = 0;
	}
	if (mem->old == 0)
	  mem->old = 1;
	else
	  mem->old = 0;

	new = mem->new;
	old = mem->old;
	oldest = mem->oldest;
	  }


	  for (j = 0; j < HBLKSIZE; j++) {
	r_prime = 2.0 * r[ch][old][j] - r[ch][oldest][j];
	phi_prime = 2.0 * phi_sav[ch][old][j] - phi_sav[ch][oldest][j];
	r[ch][new][j] = sqrt ((FLOAT) energy[j]);
	phi_sav[ch][new][j] = phi[j];
#ifdef SINCOS
	{
	  // 12% faster
	  //#warning "Use __sincos"
	  FLOAT sphi, cphi, sprime, cprime;
	  __sincos ((FLOAT) phi[j], &sphi, &cphi);
	  __sincos ((FLOAT) phi_prime, &sprime, &cprime);
	  temp1 = r[chn][new][j] * cphi - r_prime * cprime;
	  temp2 = r[chn][new][j] * sphi - r_prime * sprime;
	}
#else
	temp1 =
	  r[ch][new][j] * cos ((FLOAT) phi[j]) -
	  r_prime * cos ((FLOAT) phi_prime);
	temp2 =
	  r[ch][new][j] * sin ((FLOAT) phi[j]) -
	  r_prime * sin ((FLOAT) phi_prime);
#endif
	
	temp3 = r[ch][new][j] + fabs ((FLOAT) r_prime);
	if (temp3 != 0)
	  c[j] = sqrt (temp1 * temp1 + temp2 * temp2) / temp3;
	else
	  c[j] = 0;
	  }
	  /*****************************************************************************
	   * Calculate the grouped, energy-weighted, unpredictability measure,		   *
	   * grouped_c[], and the grouped energy. grouped_e[]						   *
	   *****************************************************************************/
	  
	  for (j = 1; j < CBANDS; j++) {
	grouped_e[j] = 0;
	grouped_c[j] = 0;
	  }
	  grouped_e[0] = energy[0];
	  grouped_c[0] = energy[0] * c[0];
	  for (j = 1; j < HBLKSIZE; j++) {
	grouped_e[partition[j]] += energy[j];
	grouped_c[partition[j]] += energy[j] * c[j];
	  }
	  
	  /*****************************************************************************
	   * convolve the grouped energy-weighted unpredictability measure			   *
	   * and the grouped energy with the spreading function, s[j][k]			   *
	   *****************************************************************************/
	  for (j = 0; j < CBANDS; j++) {
	ecb[j] = 0;
	cb[j] = 0;
	for (k = 0; k < CBANDS; k++) {
	  if (s[j][k] != 0.0) {
		ecb[j] += s[j][k] * grouped_e[k];
		cb[j] += s[j][k] * grouped_c[k];
	  }
	}
	if (ecb[j] != 0)
	  cb[j] = cb[j] / ecb[j];
	else
	  cb[j] = 0;
	  }
	  
	  /*****************************************************************************
	   * Calculate the required SNR for each of the frequency partitions		   *
	   *		 this whole section can be accomplished by a table lookup		   *
	   *****************************************************************************/
	  for (j = 0; j < CBANDS; j++) {
	if (cb[j] < .05)
	  cb[j] = 0.05;
	else if (cb[j] > .5)
	  cb[j] = 0.5;
	tb = -0.434294482 * log ((FLOAT) cb[j]) - 0.301029996;
	cb[j] = tb;
	bc[j] = tmn[j] * tb + nmt * (1.0 - tb);
	k = (int) (cbval[j] + 0.5);
	bc[j] = (bc[j] > bmax[k]) ? bc[j] : bmax[k];
	bc[j] = exp ((FLOAT) -bc[j] * LN_TO_LOG10);
	  }
	  
	  /*****************************************************************************
	   * Calculate the permissible noise energy level in each of the frequency	   *
	   * partitions. Include absolute threshold and pre-echo controls			   *
	   *		 this whole section can be accomplished by a table lookup		   *
	   *****************************************************************************/
	  for (j = 0; j < CBANDS; j++)
	if (rnorm[j] && numlines[j])
	  nb[j] = ecb[j] * bc[j] / (rnorm[j] * numlines[j]);
	else
	  nb[j] = 0;
	  for (j = 0; j < HBLKSIZE; j++) {
	/*temp1 is the preliminary threshold */
	temp1 = nb[partition[j]];
	temp1 = (temp1 > absthr[j]) ? temp1 : absthr[j];
#ifdef LAYERI
	/*do not use pre-echo control for layer 2 because it may do bad things to the */
	/*	MUSICAM bit allocation algorithm										 */
	if (lay == 1) {
	  fthr[j] = (temp1 < lthr[ch][j]) ? temp1 : lthr[ch][j];
	  temp2 = temp1 * 0.00316;
	  fthr[j] = (temp2 > fthr[j]) ? temp2 : fthr[j];
	} else
	  fthr[j] = temp1;
	lthr[ch][j] = LXMIN * temp1;
#else
	fthr[j] = temp1;
	lthr[ch][j] = LXMIN * temp1;
#endif
	  }
	  
	  /*****************************************************************************
	   * Translate the 512 threshold values to the 32 filter bands of the coder	   *
	   *****************************************************************************/
	  for (j = 0; j < 193; j += 16) {
	minthres = 60802371420160.0;
	sum_energy = 0.0;
	for (k = 0; k < 17; k++) {
	  if (minthres > fthr[j + k])
		minthres = fthr[j + k];
	  sum_energy += energy[j + k];
	}
	snrtmp[i][j / 16] = sum_energy / (minthres * 17.0);
	snrtmp[i][j / 16] = 4.342944819 * log ((FLOAT) snrtmp[i][j / 16]);
	  }
	  for (j = 208; j < (HBLKSIZE - 1); j += 16) {
	minthres = 0.0;
	sum_energy = 0.0;
	for (k = 0; k < 17; k++) {
	  minthres += fthr[j + k];
	  sum_energy += energy[j + k];
	}
	snrtmp[i][j / 16] = sum_energy / minthres;
	snrtmp[i][j / 16] = 4.342944819 * log ((FLOAT) snrtmp[i][j / 16]);
	  }
	  /*****************************************************************************
	   * End of Psychoacuostic calculation loop									   *
	   *****************************************************************************/
	}
	for (i = 0; i < 32; i++) {
	  smr[ch][i] = (snrtmp[0][i] > snrtmp[1][i]) ? snrtmp[0][i] : snrtmp[1][i];
	}

  } // next channel

}

void psycho_2_deinit(psycho_2_mem **mem) {

	if (mem==NULL||*mem==NULL) return;

	TWOLAME_FREE( (*mem)->tmn );
	TWOLAME_FREE( (*mem)->s );
	TWOLAME_FREE( (*mem)->lthr );
	TWOLAME_FREE( (*mem)->r );
	TWOLAME_FREE( (*mem)->phi_sav );
	
	TWOLAME_FREE( (*mem) );
}


// vim:ts=4:sw=4:nowrap: